
Project ManagementProject ManagementProject ManagementProject Management

The whole picture

Integrate
units

Design
.

Requirements
engineering

Requirement
document

Design
document

Unit

Unit

System

Implement
unit

Implement
unit

VV system

VV
design

VV requirements

VV unit

VV unit

Requirement
document

Design
document

Unit

Unit

System

Project management
Configuration management

Quality management

Summary

� Good PM is not enough to warranty that a project succeeds

� But bad PM is enough to warranty that a project is late, over
budget and does not deliver the needed functionality

� Key activities in PM are project planning, cost and effort
estimation, project tracking, project organization, risk
management

� Key tools are Work breakdown structure, product breakdown
structure (VPM in software projects), Gantt and Pert charts,
process and product measures.

OutlineOutlineOutlineOutline

Project managementProject managementProject managementProject management

Concepts and techniquesConcepts and techniquesConcepts and techniquesConcepts and techniques

MeasuresMeasuresMeasuresMeasures

Project planningProject planningProject planningProject planning

Risk ManagementRisk ManagementRisk ManagementRisk Management

Project Management

Software System (functions and quality)

Calendar time Cost

No notion of unpredictable events here

Management activities

� planning

� defining activities and products

� scheduling activities and deliveries on
calendar

� deciding organizational structure

� allocating resources

� estimating cost / effort

� tracking

� managing risks

Concepts and techniques

Concepts and Techniques

� Concepts

� Resource

� Phase, Activity

� Milestone

� Deliverable

� Techniques

� Pert, Gantt, WBS, PBS

Resource

� Person

� Tool

Activity, phase

� Activity

� Time passed by resource to perform
defined, coherent task

� Phase

� Set of activities

Milestone

� Key event/condition in the project

� with effects on subsequent activities

� ex. requirement document accepted
by the customer

� if yes then ..

� if no then ..

Deliverable

� Product (final or intermediate) in the
process

� Cfr requirements document, prototype

� internal (for producer) or external (for
customer)

� contractual value or not

WBS

� Work Breakdown Structure

� Hierarchical decomposition of
activities in subactivities

� no temporal relationships

Table 3.1. Phases, steps and activities of building a house.

Phase 1: Landscaping the lot Phase 2: Building the house
Step 1.1:
Clearing
and
grubbing

Step 2.1:
Prepare the
site

Activity 1.1.1: Remove trees Activity 2.1.1: Survey the land
Activity 1.1.2: Remove stumps Activity 2.1.2: Request permits

Step 1.2:
Seeding the
turf

Activity 2.1.3: Excavate for the
foundation

Activity 1.2.1: Aerate the soil Activity 2.1.4: Buy materials
Activity 1.2.2: Disperse the seeds Step 2.2:

Building the
exterior

Activity 1.2.3: Water and weed Activity 2.2.1: Lay the foundation
Step 1.3:
Planting
shrubs and
trees

Activity 2.2.2: Build the outside walls

Activity 1.3.1: Obtain shrubs and trees Activity 2.2.3: Install exterior plumbing
Activity 1.3.2: Dig holes Activity 2.2.4: Exterior electrical work
Activity 1.3.3: Plant shrubs and trees Activity 2.2.5: Exterior siding
Activity 1.3.4: Anchor the trees and
mulch around them

Activity 2.2.6: Paint the exterior

Activity 2.2.7: Install doors and fixtures
Activity 2.2.8: Install roof

Step 2.3:
Finishing
the interior

Activity 2.3.1: Install the interior
plumbing
Activity 2.3.2: Install interior electrical
work
Activity 2.3.3: Install wallboard
Activity 2.3.4: Paint the interior
Activity 2.3.5: Install floor covering
Activity 2.3.6: Install doors and fixtures

� Requirements planning

� Review existing systems

� Perform work analysis

� Model process

WBS

Table 3.2. Milestones in building a house.

1.1. Survey complete
1.2. Permits issued
1.3. Excavation complete
1.4. Materials on hand
2.1. Foundation laid
2.2. Outside walls complete
2.3. Exterior plumbing complete
2.4. Exterior electrical work complete
2.5. Exterior siding complete
2.6. Exterior painting complete
2.7. Doors and fixtures mounted
2.8. Roof complete
3.1. Interior plumbing complete
3.2. Interior electrical work complete
3.3. Wallboard in place
3.4. Interior painting complete
3.5. Floor covering laid
3.6. Doors and fixtures mounted

PBS

� Product Breakdown Structure

� hierarchical decomposition of product

� Product

– Requirement document

– Design document

– Module 1

– Low level design

– Source code

– Module 2

– Low level design

– Source code

– Testdocument

Gantt chart

ID Task Name
1 Requirements Planning
2 Review existing systems

3 Perform work flow analysis

4 Model process

5 Identify user requirements

6 Identify performance requirements

7 Identify interface requirements

8 Prepare Software Requirements Specification

9 Software Requirements Review

0%

0%

0%

0%

0%

0%

0%

21/06

S M W F S T T S M W F S T T S
4 30 May '94 06 Jun '94 13 Jun '94 20 Jun '94

Pert

Reviewexisting
systems

2 3d

Wed 01/06/94Fri 03/06/94

Performworkflow
analysis

3 3d

Mon 06/06/94Wed 08/06/94

Modelprocess

4 2d

Thu 09/06/94Fri 10/06/94

Identifyuser
requirements

5 2d

Mon 13/06/94Tue 14/06/94

Identify
performance

6 2d

Wed 15/06/94Thu 16/06/94

Identifyinterface
requirements

7 2d

Fri 17/06/94Mon 20/06/94

PrepareSoftware
Requirements

8 1d

Tue 21/06/94Tue 21/06/94

Requirements
Planning

1 120h

Wed 01/06/94Tue 21/06/94

Software
Requirements

9 0d

Tue 21/06/94Tue 21/06/94

Gantt

PERT

PERT PERT
-directed acyclic graph:

node = activity, arrow = precedence relationship

Docum.
2

Design
4

Requir.
3

START

Test
plan

2

Unit Test
6

Coding
4

System Test
4

STOP
Test Data

2

Critical path analysisCritical path analysis

� What is shortest time to complete the
project?

� What are the critical activities to
complete the project in shortest time?

� Critical activities are the ones on the
critical path(s)

Critical pathCritical path
� -

Path with longest duration

(1) START label with (0,0)

(2) For each node N whose predecessors are labeled:
SN=max {Si} Si: end time for i-th predecessor

label N with (SN, SN+duration)

(3) Repeat (2) until all nodes labeled

start end

ExampleExample
� .

Docum.Design
4

Requir.

START

Test Plan
Unit Test

Code

System Test

STOP

Test data

(3,7)

(0,3)

(0,0) (3,5)
(7,11)

(7,9)

(15,15)

(0,2) (2,8)
(11,15)

2

2

3
2

4

4

6

AnalysisAnalysis

� -Late start
latest time an activity can be started
without changing end time of project

� .

� .

� .

� .

� .

� -

� .Slack time
Admissible delay to complete an
activity

To Compute “Slack Time” To Compute “Slack Time”

Start from graph (S,F) from critical
path analysis, for each node compute
new labels (S’,F’), max start and end
times
1. For STOP (S’, F’)=(S,F).

2. For each node whose successors are labeled
(S’, F’) compute min S’, that becomes F’ for the

node
S’=F’-duration

Slack Time=S’- S (or also F’- F)

3. Repeat

Managerial ImplicationsManagerial Implications

1. Use slack time to delay start time, or
lenghten, an activity

2. If duration of activity on critical path
lenghtens by X, the whole project is
delayed by X

3. If only one critical path exists,
reducing duration of any activity on
critical path shortens duration of
project.

Measures

Relevant software measures

� Process measures
� time, effort, cost
� productivity
� earned value
� fault, failure, change

� Product measures
� Functionality (FP)
� Size
� Price
� Modularity
� Other .. ilities

Measures

Software System (functions and quality)

Calendar time Cost

No notion of unpredictable events here

LOC, FP failure fault

effort

Calendar time, or duration

� Days, weeks, months, on calendar

� Relative, from project start

� Month1, month2, etc

� Typically used in planning

� Absolute

� September 12

� Typically used in controlling

� Remark, transition relative -> actual is
not 1 to 1 (vacations, etc)

Effort

� time taken by staff to complete a task

� Depends on calendar time and on
people employed

� Measured in person hours (ieee 1045)

� person day, person month, person year
depend on national and corporation
parameters

� Converts in cost

� Staff cost = person hours * cost per hour

Effort

� 1 person works 6 hours � 6 ph

� 2 persons work 3 hour � 6 ph

� 6 persons work 1 hour � 6ph

Calendar time vs. effort

� Always linked

� Mathematical link. 6 ph can last

� 6 calendar hours if 1 person works

� 3 calendar hours if 2 persons work in parallel

� 1 calendar hour if 6 persons work in parallel

� Practical constraint

� Is it feasible?

– One woman makes a baby in 9 months

– 9 women make a baby in one month?

Costs - roles

Software product
or service

Developer /Vendor User /Buyer

Cost - vendor

� Personnel

� Staff

– Person hours, salary

– Overhead costs (office space, heating/cooling,
telephone, electricity, cleaning, ..)

� Hardware

– Development platform, (target platform)

� Software

– Licenses (OS, DB, tools ..)

Cost - user

� Total Cost of Ownership (TCO)

� Considers the complete time window
involving the product

� At least three phases

– Before acquisition

– Usage

– Dismissal

Cost – user (2)

� Before acquisition

� Costs to define requirements and select
the product

– Market analysis, feasibility studies,
requirement definition, vendor / product
evaluation, contract negotiation

� Acquisition

� Acquisition cost

– one time fee, yearly fee, usage fee

� Acquisition cost (= price) ⇔ vendor cost
+ profit

Cost – user (3)

� After acquisition

� Deployment costs

– Install in all users machines

– Training for users

– Learning curve

� Operation costs

– Servers, network

� Maintenance costs

– Collection of anomalies, effect of anomalies

– Corrective, evolutive, enhancement
maintenance

Cost – user (4)

� Dismissal

� Uninstall product

� Back up data, data conversion ..

TCO

� The longer the time frame, the less
important the acquisition cost

� Ex, commercial airplane

� Time frame: 20 years (50.000 hours)

� Cost of airplane = 1/6 of TCO

– Key cost factors are fuel, crew, maintenance

Costing and pricing

� Estimates are made to discover the cost, to
the developer, of producing a software
system

� There is not a simple relationship between
the development cost and the price charged
to the customer

� Broader organisational, economic, political
and business considerations influence the
price charged

Software pricing factors

Size

� Of source code

� LOC (Lines of Code)

� Of documents

� Number of pages

� Number of words, characters, figures,
tables

Size

� Of entire project

� Function points (see later)

� LOC

– In this case LOCs virtually include all
documents (non code) produced in the
application

– Ex. project produces 10 documents (1000
pages) and 1000 LOCs. By convention project
size is 1000 LOCs

LOC

� What to count
– w/wout comments

– w/wout declarations

– w/wout blank lines

� What to include or exclude

� Libraries, calls to services etc

� Reused components

� Comparison for different languages
not meaningful

� C vs Java? Java vs C++? C vs ASM?

Productivity

� Output/effort

� What is output in software?

� Size/effort = LOC / effort

– Inherits problems of LOC

� Functionality/effort = FP/effort

� Object Points / effort

LOC/effort

� The lower level the language, the more
productive the programmer

� The same functionality takes more code to
implement in a lower-level language than in a
high-level language

� The more verbose the programmer, the
higher the productivity

� Measures of productivity based on lines of code
suggest that programmers who write verbose
code are more productive than programmers
who write compact code

High and low level languages

Productivity paradox
analysis design coding testing doc

Low
level

3
[person
weeks]

5 8 10 2

High
level

3 5 4 6 2

size effort product
ivity

Low
level

5000
[Loc]

28
[person
weeks]

714
[Loc/

month]

High
level

1500 20 300

� Real-time embedded systems, 40-
160 LOC/P-month

� Systems programs , 150-400 LOC/P-
month

� Commercial applications, 200-800
LOC/P-month

� Source: Sommerville

Productivity figures

Productivity figures

� Manufacturing

� Retail

� Public administration

� Banking

� Insurance

Source: Maxwell, 1999

� 0.34 FP/person hour

� 0.25

� 0.23

� 0.12

� 0.12

Factors affecting productivity

� All metrics based on size/effort are
flawed because they do not take quality
into account

� Productivity may generally be increased
at the cost of quality

� It is not clear how productivity/quality
metrics are related

� If change is constant then an approach
based on counting lines of code is not
meaningful

Quality and productivity

Failure vs. Fault

� Failure

� malfunction perceived by the user

� Fault

� defect in the system, may cause failure or
not

FailureFault

Software system

0, many

causes

0, many1, many

Failure

� data to collect
– calendar time, project time, execution time

– effect (bad data, loss of data, ...)

– location (product type, id)

– gravity (human injury, economic loss, ..)

– user profile

– related fault(s)

� measures
– classification, count per class

– average time intervals

Fault

� data to collect

� effect (related failure, if any)

� location (product type, id)

� type (e.g. missing req, uninitialized var,
logic error, ..)

� cause (communication,
misunderstanding, clerical, ..)

� detecting method (test, inspection, ..)

� effort (finding and report handling)

Change

� data to collect

� location

� cause (related fault if corrective, adaptive,
perfective)

� effort

� measures

� cost of failure

Fault, Failure, Change

� measures

� n open failures

� duration/effort to close a failure

� n failures discovered per v&v activity

� fault/failure density

– faults/failures per module

– faults/failures per fp

– faults/failures per loc

� changes per document

Quality - Fault densities – benchmark

� Good: <1fault/1KLOC

� Bad: >10fault/1KLOC

– Faults found in operation, 12 months after
release

� Prerelease:

– 10-30 fault/1KLOC

� Factor 10 between pre and post release

The PM process

The PM process

Development

Operation

Maintenance

time

deployment

releaseofficial project start

planning
(estimation,
scheduling)

tracking
replanning

post
mortem

Planning

Planning Process

� Identify activities and/or deliverables

� PBS, WBS

� reference models (CMM, ISO12207)

� estimate effort and cost

� define schedule (Gantt)

� analyze schedule (Pert)

Project plan

� living document

� will be updated during tracking

� outline

� list of deliverables, activities

� milestones

� Gantt

� Pert

� personnel organization

� roles and responsibilities

Estimation

Estimation of cost and effort

� Based on analogy

� requires experience from the past to
‘foresee’ the future

– Experience can be qualitative (in mind of
people) or quantitative (data collected from
past projects)

� the closer a project to past projects, the
better the estimation

Estimation accuracy

� The cost/effort/size of a software system
can only be known accurately when it is
finished

� Several factors influence the final size

– Use of COTS and components

– Programming language

– Distribution of system

� As the development process progresses
then the estimate becomes more accurate

Estimate uncertainty

Estimation techniques

� Not suggested, but used ..

� Parkinson’s law

� Pricing to win

Techniques - suggested

� Based on judgment
� Decomposition

– By activity (WBS)

– By products (PBS)

� Expert judgment

� Delphi

� Based on data from the company
� Analogy, case based

� Regression models

� Based on data, from outside the company
� Cocomo, Cocomo2

� Function points

� Object points

Parkinson's Law

� The project costs whatever resources
are available

� Advantages: No overspend

� Disadvantages: System is usually
unfinished

Pricing to win

� The project costs whatever the
customer has to spend on it

� Advantages: You get the contract

� Disadvantages: The probability that
the customer gets the system he or
she wants is small. Costs do not
accurately reflect the work required

By decomposition

� By activity
� Identify activities (WBS)
� Estimate effort per activity
� Aggregate (linear)

� By product
� Identify products (PBS)
� Estimate effort per product
� Aggregate (linear)

� Rationale: easier to estimate smaller parts

Table 3.3. Activities and time estimates.

Activity Time estimate (in days)
Step 1: Prepare the site
Activity 1.1: Survey the land 3
Activity 1.2: Request permits 15
Activity 1.3: Excavate for the foundation 10
Activity 1.4: Buy materials 10
Step 2: Building the exterior
Activity 2.1: Lay the foundation 15
Activity 2.2: Build the outside walls 20
Activity 2.3: Install exterior plumbing 10
Activity 2.4: Exterior electrical work 10
Activity 2.5: Exterior siding 8
Activity 2.6: Paint the exterior 5
Activity 2.7: Install doors and fixtures 6
Activity 2.8: Install roof 9
Step 3: Finishing the interior
Activity 3.1: Install the interior plumbing 12
Activity 3.2: Install interior electrical work 15
Activity 3.3: Install wallboard 9
Activity 3.4: Paint the interior 18
Activity 3.5: Install floor covering 11
Activity 3.6: Install doors and fixtures 7

Expert judgement

� one or more experts (chosen in
function of experience) propose an
estimate

Delphi

� evolution of expert judgement

� structured meetings to achieve
consensus in estimate

� each participant proposes estimate
(anonymous)

� team leader publishes synthesis

– (a + 4m + b)/6 (beta distribution)

– a best - b worst - m mean

� iterate

By analogy, case based

� A set of projects

� Each project has a number of
attributes (with respective values)

� Ex size, technology, staff experience,
effort, duration, etc

� Define attributes for new project

� Find ‘near’ project(s)

� Distance function

� Use (adapted) effort of near project

Ex.

� See file MaxwellDataSetChap1.xls

� New project

� We estimate

– size = 200fp, application type =transpro,
telonuse = no

� Near projects (yellow rows) have effort

– 7320, 1520, 963, 5578

� We estimate effort at

– Average of effort of yellow projects= 3845

Regression models

� If the company has a data base of past
projects

� min info required: size, effort

� See file MaxwellDataSetChap1.xls

� apply regression (linear, or else)

� Estimate productivity

� Estimate size, compute effort

Linear regression

effort vs size

y = 15.649x

R2 = 0.851

0

10000

20000

30000

40000

50000

60000

70000

0 500 1000 1500 2000 2500 3000 3500 4000

size [FP]

ef
fo

rt
 [

p
er

so
n

 h
o

u
rs

]

Ex.

� Using Maxwell data set, linear regression
effort vs. size on all projects gives

� Productivity = 1/15.649 fp/person hour
0.063 fp per person hour

� R2 = 0.85 (good model)

� Given new project

� We estimate size =200fp

� Estimated effort = 200*15.649 = 3773 ph

Function Points

� fp = A*EI + B*EO + C*EQ + D*EIF + E*ILF

� EI = number of Input Item

� EO = output item

� EQ = Inquiry

� EIF= External Interface File

� ILF = Internal Logical File

� Coefficients A,B,C,D,E

Function Points

� For any product, size in “function points”
is given by

FP = 4 × EI + 5 × EO + 4 × EQ + 10 × ILF + 7 × EIF

� A 3-step process.

Currency

Human Resources

New Employee Information (EI)

Employee Report (EO)

Conversion
Rate (EIF)

Request and Display
Employee Information
(together = EQ)

Employee Information (ILF)

Boundary

User 1

User 1

User 1

Function Points (2)

� 1. Classify each component of product (EI, EO, EQ,

ILF, EIF) as simple, average, or complex.

� Assign appropriate number of function points

� Sum gives UFP (unadjusted function points)

Function Points (3)

� 2. Compute technical
complexity factor (TCF)

� Assign value from 0 (“not
present”) to 5 (“strong
influence throughout”) to
each of 14 factors such as
transaction rates,
portability

� Add 14 numbers ⇒ total
degree of influence (DI)

TCF = 0.65 + 0.01 × DI

� Technical complexity
factor (TCF) lies between
0.65 and 1.35

Function Points (4)

� 3. Number of function points (FP) given
by

FP = UFP × TCF

Function Points

� suitable for MIS

� use of adjustment factors delicate

� FP expert should do estimate

– long, expensive

� conversion tables FP - LOC
– Cobol 110

– C 128-162

– C++ 53-66

– Java 53-62

� conversion tables FP - effort
– www.ifpug.org

FP

� Advantage

� Independent of technology

� Independent of programmer

� Well established and standardized

� Downside

� Counting long and expensive

� Transaction system oriented (no real
time, no embedded systems)

FP vs. LOCS
FP LOCs

Depend on prog
language

N Y

Depend on
programmer

N Y

easy to compute N, must be done
by trained
person

Y, tool based

Applicable to all
systems

N, transaction
oriented

Y

FP as unit of exchange

� Company A bids for FP

� Buy 10000 FP, how much? (bid)

� providers answer, x Euro per FP

� A selects provider

� lowest cost and other factors

� End of year, redo counting

� 10123 FP actually delivered

� A pays

Reminder

� Measures of size

� FP, LOC

� Both can be computed

� Before a project start (estimated size)

� After a project ends (actual size)

� Both can be used to

� Characterize productivity

– FP/effort, LOC/effort

� Characterize application portfolio

– FP or LOC owned and operated by a company

Function points

� IFPUG

� FP Counting Guide

� Exams/ certified counters

� GUFPI

� (CNIPA)

Object points

� Object points are an alternative
function-related measure to function
points when 4Gls or similar languages
are used for development

� Object points are NOT the same as
object classes

� The number of object points in a
program is a weighted estimate of

� The number of separate screens that are
displayed

� The number of reports that are produced
by the system

� The number of 3GL modules that must be
developed to supplement the 4GL code

Object point estimation

� Object points are easier to estimate
from a specification than function
points as they are simply concerned
with screens, reports and 3GL modules

� They can therefore be estimated at an
early point in the development process.
At this stage, it is very difficult to
estimate the number of lines of code in
a system

The COCOMO model

� Well-documented, ‘independent’ model
which is not tied to a specific software
vendor

� Long history from initial version
published in 1981 (COCOMO-81)
through various instantiations to
COCOMO 2

� COCOMO 2 takes into account different
approaches to software development,
reuse, etc.

COCOMO 81

� Based on 63 project

� Various types: scientific, MIS, embedded

� Data set then enriched

� Assumes waterfall process

� Planning and requirements analysis

� Design

� Implementation

� Integration and test

� Estimate covers 3 latter phases

COCOMO 81

Base model

� PM = effort in person months

� KDSI = K Delivered Source Instructions

� M = 1

Intermediate model

� M = product of 15 cost drivers

M, example

COCOMO 2 (1997) levels

� a 3 level model that allows increasingly
detailed estimates to be prepared as
development progresses

� Early prototyping level

� Estimates based on object points and a
simple formula is used for effort estimation

� Early design level

� Estimates based on function points that are
then translated to LOC

� Post-architecture level

� Estimates based on lines of source code

Early prototyping level

� Supports prototyping projects and
projects where there is extensive
reuse

� Based on standard estimates of
developer productivity in object
points/month

� Takes CASE tool use into account

� Formula is

� PM = (NOP × (1 - %reuse/100)) / PROD

� PM is the effort in person-months, NOP
is the number of object points and PROD
is the productivity

Object point productivity

Early design level

� Estimates can be made after the
requirements have been agreed

� Based on standard formula for
algorithmic models

� PM = A × SizeB × M + PMm where

� M = PERS × RCPX × RUSE × PDIF × PREX ×
FCIL × SCED

� PMm = (ASLOC × (AT/100)) / ATPROD

� A = 2.5 in initial calibration, Size in KLOC,
B varies from 1.1 to 1.24 depending on
novelty of the project, development
flexibility, risk management approaches
and the process maturity

Multipliers

� RCPX - product reliability and
complexity

� RUSE - the reuse required

� PDIF - platform difficulty

� PREX - personnel experience

� PERS - personnel capability

� SCED - required schedule

� FCIL - the team support facilities

� PM reflects the amount of automatically
generated code

Post-architecture level
� Uses same formula as early design

estimates

� Estimate of size is adjusted to take into
account

� Requirements volatility. Rework required
to support change

� Extent of possible reuse. Reuse is non-
linear and has associated costs so this is
not a simple reduction in LOC

� ESLOC = ASLOC × (AA + SU +0.4DM +
0.3CM +0.3IM)/100

– ESLOC is equivalent number of lines of new
code. ASLOC is the number of lines of
reusable code which must be modified, DM is
the percentage of design modified, CM is the
percentage of the code that is modified , IM is
the percentage of the original integration
effort required for integrating the reused
software.

– SU is a factor based on the cost of software
understanding, AA is a factor which reflects
the initial assessment costs of deciding if
software may be reused.

� This depends on 5 scale factors (see
next slide). Their sum/100 is added to
1.01

� Example
– Precedenteness - new project - 4

– Development flexibility - no client
involvement - Very high - 1

– Architecture/risk resolution - No risk analysis
- V. Low - 5

– Team cohesion - new team - nominal - 3

– Process maturity - some control - nominal - 3

� Scale factor is therefore 1.17

The exponent term

Exponent scale factors

� Product attributes
– concerned with required characteristics of the software

product being developed

� Computer attributes

– constraints imposed on the software by the hardware
platform

� Personnel attributes

– multipliers that take the experience and capabilities of
the people working on the project into account.

� Project attributes
– concerned with the particular characteristics of the

software development project

Multipliers

Project cost drivers

Effects of cost drivers

Sw project Data sets

� Company specific

� When exists

� Maxwell, Applied statistics for software
managers, Prentice Hall

� Public

� Knowledge plan (Caper Jones)

� Software productivity research

� ISBSG, Int. software benchmarking
standards group, www.isbsg.org

Scheduling

Project duration

� As well as effort estimation, calendar
time must be estimated, and staff
allocated

� Scheduling can be done on Gantt/Pert

� COCOMO2 gives also an estimate of
calendar time

� Independent of staffing

� Calendar time can be estimated using
a COCOMO 2 formula

� TDEV = 3 × (PM)(0.33+0.2*(B-1.01))

� PM is the effort computation and B is the
exponent computed as discussed above
(B is 1 for the early prototyping model).
This computation predicts the nominal
schedule for the project

Staffing requirements

� Staff required can’t be computed by
dividing the development time by the
required schedule

� The number of people working on a
project varies depending on the phase
of the project

� The more people who work on the
project, the more total effort is usually
required

� A very rapid build-up of people often
correlates with schedule slippage

Staffing profile

� Number of people working on the
project vs. time

� Typically has a bell shape

� duration of project is constrained by
staffing profile + total effort estimated

time

#people

R D
CUT

ITST

The PM process

Development

Operation

Maintenance

time

deployment

releaseofficial project start

planning
(estimation,
scheduling)

tracking
replanning

post
mortem

Tracking

Tracking process

� project has started how to know status of
project?

� collect project data, define actual status

� compare estimated – actual

� Estimated Gantt is the roadmap for project

� if deviations, do corrective actions

� change personnel, change activities, change
deliverables, ...

� re-plan, update Gantt and PERT

Project status

• Option1
– Effort spent

• Option2
– Effort spent + activities closed

• Option3
– Earned value

Effort spent

� Collect effort spent, compare with
estimated

� Ex, spent 10, estimated 100, we are done
10%

� Big flaw, confounds input measure
(effort spent) with output measure
(completion)

� Typical result, spent 90, estimated 100,
but the remaining 10% takes 100..

Activities closed

� How to define when activity is closed?

� All effort planned for activity is spent

– Same problem, confounds input with output

� Define quality gate, level to achieve

– Ex, requirements: inspection meeting,
majority of participants judges document is
goodenough

– Ex, unit testing: coverage 95% of nodes, and
all tests pass

Earned value

� A technique to measure progress of a
project

� Step 1: identify activities, assign a
value to them (Planned Value, PV),
schedule them

a1, PV20

a2,
PV10

a3, PV20
a4, PV30

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10

10

80

40

Earned value

� Step 2: define a rule to pass from PV
to EV (rule1 0/100 or rule2
0/50/100)

� With rule1, the project earns the PV of an
activity when the activity is 100% finished

a1, PV20

a2,
PV10

a3, PV20
a4, PV30

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10

10

80

40

PV

Earned value

� Step 3: start the project, measure EV
and compare with PV

a1, PV20

a2,
PV10

a3, PV20
a4, PV30

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10

10

80

40

PV

EV

SV

Earned value

� Step 4: compute also AC, actual cost

a1, PV20

a2,
PV10

a3, PV20
a4, PV30

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10

10

80

40

PV

CV

AC

The PM process

Development

Operation

Maintenance

time

deployment

releaseofficial project start

planning
(estimation,
scheduling)

tracking
replanning

post
mortem

Post Mortem

Post mortem

� A form of organizational learning

� Collect key information from the
project

� Effort, faults – estimated and actual

� Achievements

� Problems and causes

� To make it available to other projects

PMA – learn from experience

� PMA (when used appropriately) PMA ensures
that team members recognise and
remember what they learned during a
project.

� PMA identifies improvement opportunities
and provides means to initiate sustained
change.

� PMA provides qualitative feedback

� Two types

� General PMA

� Focused PMA – understanding and improving a
project`s specific activity

PMA process

� Preparation

� Study the project history to understand
what has happened

� Review all available documents

� Determine goal for PMA

� Example of goal: Identify major project
achievements and further improvement
opportunities.

PMA process cont.

� Data collection

� Gather relevant project experience

� Focus on positive and negative aspects

� Semistructured interviews – pre-prepared list of
questions

� Facilitated group discussion

� KJ sessions

– Write down up to four positive and negative project
experience on post-it notes.

– Put the notes on a whiteboard

– Re-arrange notes into groups and discuss them

PMA process cont.

� Analysis

� Feedback session

– Have we (analyser) understood what you
(project member) told us, and do we have all
the relevant facts?

� Ishikawa diagram in a collaborative process to
find the causes for positive and negative
experiences

– Draw an arrow on a whiteboard – which is label
with experience

– Add arrows with causes (the diagram will look
like a fishbone)

PMA – results and experience

� Document the PMA results in a project
experience report

� Project description

� Projects main problems, with description
and Ishikawa diagrams

� Project main success, with descriptions
and Ishikawa diagrams

� PMA meeting as an appendix (to let the
reader see how the team discussed
problems and successes)

Collecting and using measures

The measurement process

� A process should be defined and
implemented to collect data, derive and
analyze measures

� Data collected during this process should
be maintained as an organisational resource

� Once a measurement database has been
established, comparisons across projects
become possible

Product measurement process

GQM

� Focus on few, important measures
(top down)

� Never “collect everything, analyze
later” (bottom up)

� Too much data

� Not meaningful

Goal - (similar to KPI)

� G1Satisfying customer

� What is satisfaction?

– Interviews

� What is quality of product?

– Defects after delivery

� G2 produce low cost product

� What is cost

– Cost of development

Typical indicators

� Effort (Cost)

� Size

� Defects after delivery

� Defects during development

GQM example

� Overall research question

� Are UML Object diagrams useful?

Goal

� Object of study

� UML Static structure diagrams

� Purpose

� Evaluate

� Focus

� Usefulness

� Point of view

� Maintainer comprehending software

� Context

� Master degree class

Data collection

� A metrics programme should be
based on a set of product and process
data

� Data should be collected immediately
(not in retrospect) and, if possible,
automatically

� Data should be controlled and
validated as soon as possible

Data accuracy
� Don’t collect unnecessary data

– The questions to be answered should be
decided in advance and the required data
identified

� Tell people why the data is being
collected

– It should not be part of personnel evaluation

� Don’t rely on memory
– Collect data when it is generated not after a

project has finished

Data presentation

� Reports

� Web reports

� Dashboard

Dashboard

Personnel

Project personnel

� Key activities requiring personnel:

� requirements analysis

� system design

� program design

� program implementation

� testing

� training

� maintenance

� quality assurance

Choosing personnel
� ability to perform work

� interest in work

� experience with

� similar applications

� similar tools or languages

� similar techniques

� similar development environments

� training

� ability to communicate with others

� ability to share responsibility

� management skills

Work styles

� Extroverts: tell their thoughts

� Introverts: ask for suggestions

� Intuitives: base decisions on feelings

� Rationals: base decisions on facts,
options

Organizational structure

� Depends on

� backgrounds and work styles of team
members

� number of people on team

– n people, max interactions = n2/2

� management styles of customers and
developers

� Examples:

� Chief programmer team

� Egoless approach

Organizational structures

Highly structured

� high certainty

� repetition

� large project

Loosely structured

� uncertainty

� new technology

� small projects

Risk management

Risk management

� Project Management for adults

If you don’t actively attack the risks,

they will actively attack you

Tom Gilb

Risk Management

Software system (functions, quality)

Calendar time Costs

Risks

Strategies

� Reactive

� “Indiana Jones school of risk
management”

� Risk management = Crisis management
(“fire-fighting mode”)

� Proactive

Risk management (proactive)

� Identify risks

� analyze them

� quantify effects

� define strategies and plans to handle
them

Risk

� Future event that can have (bad) impact
on project

Risk categories

� Project

� Technical

� Business

� Known

� Predictable

� Unknown

Project Risks

� Regarding (ill defined) project plan

� budget, personnel, timings, resources,
customers

� Regarding management

� No management support

� Missing budget or people

Technical risks

� Regard fesibility of product

� Design, interfaces, verification, ..

Business risks

� Regarding market or company

� No market for the product (market risk)

� Product not in scope with company plans
(strategic risk)

� Sales force does not know how to sell the
product (sales risk)

Known risks

� Identified before/during risk
management

� Ex:

� Unrealistic deadlines

� No requirements

� No focus

� Poor development environment

Predictable risks

� From previous experience

� Ex.

� Personnel turnover

� Poor communication with customer

Boehm’s top ten risk items
� Personnel shortfalls

� Unrealistic schedules and budgets

� Developing the wrong functions

� Developing the wrong user interfaces

� Gold-plating

� Continuing stream of requirements changes

� Shortfalls in externally-performed tasks

� Shortfalls in externally-furnished components

� Real-time performance shortfalls

� Straining computer science capabilities

Other common risks
� instability of COTS (Commercial Off-The-Shelf)

components/products

� interface with legacy

� stability of development platform (hw + sw)

� limitations of platform

� multi-site development

� use of new methodologies / technologies

� standards, laws

� development team involved in other activities

� communication/language problems

Risk management terms

� Risk impact: the loss associated with
the event

� Risk probability: the likelihood that
the event will occur

� Risk control: the degree to which we
can change the outcome

Risk exposure = (risk probability) x (risk
impact)

RM Process

� 1- Risk assessment

� identification

� analysis

� ranking

� 2- Risk control

� planning

� monitoring

Identification

� identify risks

� checklist, taxonomies, questionnaires

– PMI (Project Management Institute, PMBOK)

– SEI (SEI-93-TR-06)

– ex: technical, management, business risks

� brainstorming

� experience

Analysis

� probability

� very high, high, medium, low, very low

� impact

� catastrophic, critical, marginal, negligible

� exposure

� probability * impact

Exposure

Impact/

probability

Very high High Medium Low Very low

Catastrophic High High Moderate Moderate Low

Critical High High Moderate Low Null

Marginal Moderate Moderate Low Null Null

Negligible Moderate Low Low Null Null

Ranking

� By exposure

� by qualitative assessments

� only higher exposure risks are handled

RM Process

� 1- Risk assessment

� identification

� analysis

� ranking

� 2- Risk control

� planning

� monitoring

Planning

� For selected risks (high in exposure)

� define corrective actions

� evaluate cost, decide if acceptable

� insert actions in project plan

Three strategies for risk reduction

� avoiding the risk: change requirements
for performance or functionality

� transferring the risk: transfer to other
system, or buy insurance

� assuming the risk: accept and control it

risk leverage = difference in risk
exposure divided by cost of reducing
the risk

Ex.

� ABS for car, software controlled. More
flexible, but risk of failure from
software

� Avoiding. No software controlled

� Transfer. Insurance.

� Assuming. Develop software with best
techniques, apply redundancy.

Ex.

� Risk leverage

� ABS, software developed normally

– cost 100KEuro,

– risk exposure = 10-3 * 1M Euro

� ABS, software developed best techniques

– cost 1M Euro,

– risk exposure = 10-6 * 1M Euro

� Risk leverage

10-3 * 1M Euro - 10-6 * 1M Euro /
(1M – 100k)Euro

Company profiles and risk handling styles

� project owner - takes charge of risk

� fixed price contract

� work provider - no interest in risk

Monitoring

� follow project plan, including
corrective actions

� monitor status of risks

� identify new risks, assess them,
update ranking

Monitoring (2)

� Is part of PM that has to consider also

� risk log (document)

� risk reviews (activities)

– also with external assessors

– can be coupled with project reviews

Risk log

Risk Probability Impact Exposure Action Status

hw platform
not available

high Critical high Add software
Layer
compatible
with other
platforms

Under control

Actions for risks

� Personnel shortfalls

� hire the best, the most suitable, training,
team building, technical reviews

� unrealistic schedules and budget

� more detailed plans, iterative process, reuse,
new plans

� instability of components (COTS)

� qualification, detailed analysis of product and
vendor, software layer.

� inadequate requirements

� prototyping, JAD, iterative process, include user
representative in process

– Joint Application Development

� inadequate user interface

� study user needs, usability analysis, prototyping

� requirement changes

� suitable design, iterative process, rigid change
control

� Interface with legacy

� reengineering, encapsulation, incremental
change

� subcontractors

� contracts and payments, team building,
assessments before and during

� new technologies

� prototyping, cost benefit analysis

References

� www.pmi.org project management institute

� www.sei.cmu.edu

� www.ifpug.org

� http://www.itmpi-journal.com

� www.fhg.iese.de – Fraunhofer IESE

� Rapid Development - Taming Wild Software Schedules, Steve
McConnell, Microsoft Press, 1996

� Software Engineering Risk Management, Dale Walter Karolak, IEEE
Computer Society Press, 1996

� Assessment and Control of Software Risks , Caper Jones, Yourdon
Press, 1994

� Software Risk Management - Principles and Practices, Barry
W.Boehm, IEEE Software, Vol 8, No. 1, Jan 1991, PP32-41

� Taxonomy-Based Risk Identification, M.J.Carr et al., CMU/SEI-93-
TR-06, SEI, 1993

� Www.riskwatch.com - Risk management tools

