Empirical Methods in Software Engineering (010PJIU)

The Experimental Process

http://softeng.polito.it/EMSE/

Attribution-NonCommercial-NoDerivs 2.5

• You are free: to copy, distribute, display, and perform the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or licensor.

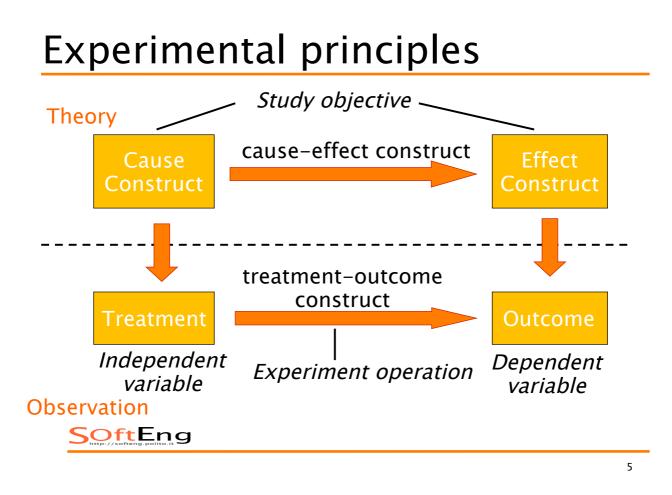
Noncommercial. You may not use this work for commercial purposes.

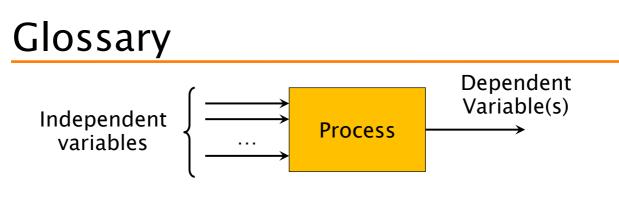
No Derivative Works. You may not alter, transform, or build upon this work.

- For any reuse or distribution, you must make clear to others the license terms of this work.
- Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

This is a human-readable summary of the Legal Code (the full license) found at the end of this document


THE EXPERIMENTAL PROCESS


SoftEng	Wohlin et. al. 2000

3

Origin

- From observation or experience find a relationship
- Formalize it into a theory
- Formulate an hypothesis
- Test it with a study

- Dependent (output, response) variables
 - Quantities observed in the study
 - E.g. productivity
- Independente (input) variables:
 - Quantities controlled and monitored
 - E.g. experience, development method

SoftEng

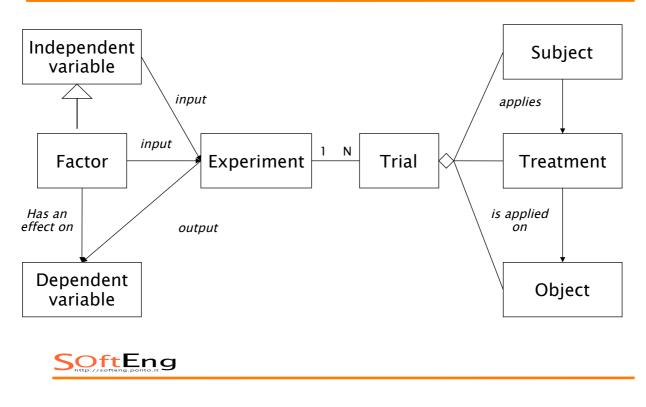
Glossary

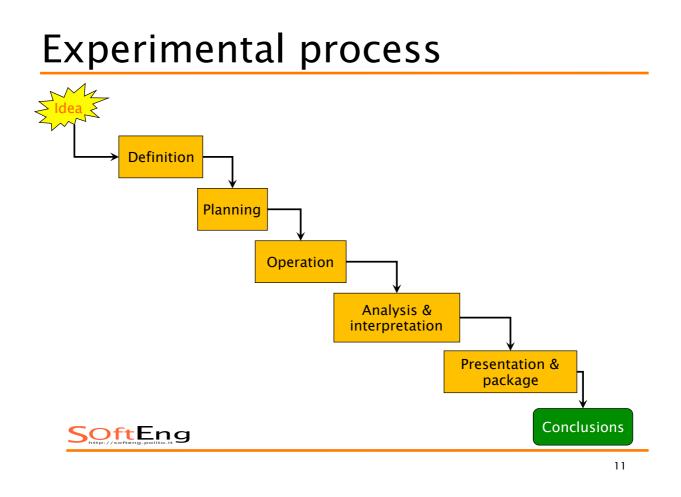
- Factor
 - An input variable whose effect on the output we want to study
 - E.g. development method
- Treatment
 - A particular value of a factor
 - E.g. upfront design vs. incremental design

Glossary

Subject performs a task with an object

- Experimental unit of observation
- The treatment may be applied to
 - Task
 - E.g. Develop using a given *methodology*
 - Object
 - E.g. Requirement with a given notation
 - Subject
 - E.g. Developer with a particular *skill*


Glossary


- Trial (experimental unit)
 - A combination of (Subject, Task, Object, Treatment)
 - Subject + Treatment
 - Task and Object counted as part of the treatment

9

- Object: Software artifact
- An experiment typically involves several trials

Experiment process: UML view

Experimental process steps

- Definition
 - Goals and objectives of the study
- Planning
 - Define context
 - Formulate hypotheses
 - Identify input and output variables
 - Design the study
 - Analyze threats to validity

SoftEng.

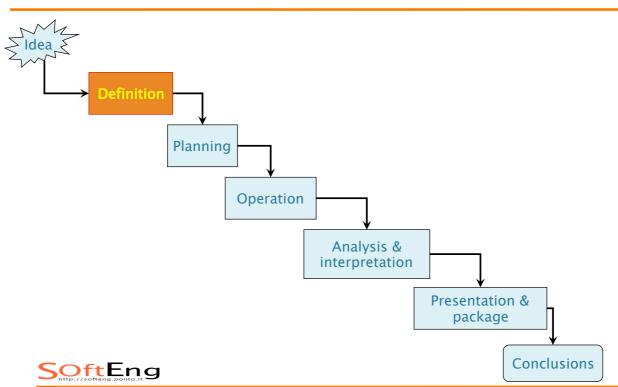
Experimental process steps

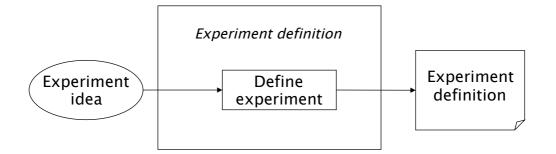
- Operation
 - Preaparation
 - Execution
 - Data validation
- Analysis and interpretation
 - Data understanding

 Descriptive statistics, EDA
 - Possible data reduction
 - Hypothesis testing
 - Results interpretation

SoftEng.

Experimental process steps

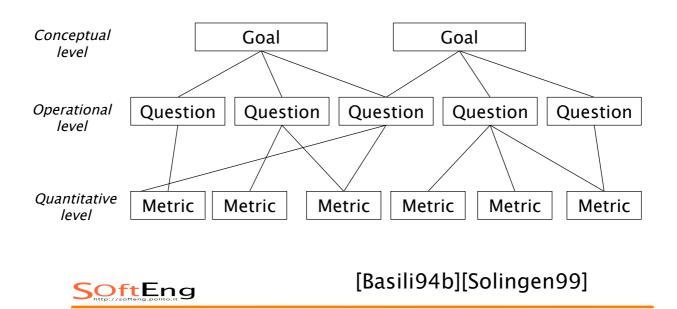

- Presentation and package
 - Document results
 - Prepare lab-package to enable replications
 - Sum up lessons learned


EXPERIMENT DEFINITION

SoftEng.

15

Definition


The definition determines the foundation of the experiment (*what* and *why*).

At this level, hypotheses sohuld be clear but not formally described

SoftEng.

Goal-Question-Metric (GQM)

Research approach

Goal definition template

Analyze	Objects(s) of study
for the purpose of	Purpose
with respect to their	Quality focus
from the point of view of	Perspective
in the context of	Context
SoftEng	
	19

Goal definition examples

Object of		Quality		
study	Purpose	focus	Perspective	Context
Product	Characterize	Effectiveness	Developer	Subjects
Process	Monitor	Cost	Modifier	Objects
Model	Evaluate	Reliability	Maintainer	
Metric	Predict	Maintainability	Project	
Theory	Control	Portability	manager	
	Change	Comprehension	Corporate manager	
			Customer	
			User	
			Researcher	
SOft	Eng			

Goal definition example

"Analyze the PBR and checklist techniques for the purpose of evaluation with respect to effectiveness and efficiency from the point of view of the researcher in the context of M.Sc. And Ph.D. students reading requirements documents"

Regnell et al. Are the Perspectives Really Different?

SoftEng

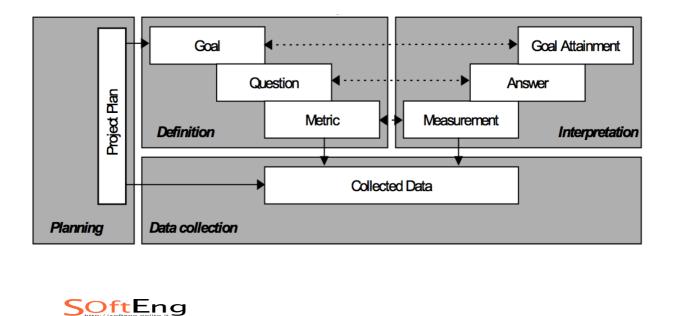
Goal definition example

Analyze	Objects(s) of study PBR and checklist techniques
for the purpose of	Purpose Evaluation (and comparison)
with respect to their	Quality focus effectiveness and efficiency
from the point of view of	Perspective the researcher
in the context of	Context M.Sc. and Ph.D. students reading requirements docs

Goal definition example

analyze the use of stereotyped UML diagrams, with the purpose of evaluating their usefulness in Web application comprehension for different categories of users. The quality focus is to ensure high comprehensibility, while the perspective is both of Researchers, evaluating how effective are the stereotyped diagrams during maintenance for different categories of users, and of Project managers, evaluating the possibility of adopting the Web modeling technique WAE in her organization, depending on the skills of the involved developers. The context of the experiment consists of two Web applications (objects) and four groups of subjects: research associates, students from an undergraduate course, and students from two graduate courses.

•Ricca et al. How Developers' Experience and Ability Influence Web Application Comprehension Tasks Supported by UML Stereotypes: A Series of Four Experiments


SoftEng.

23

Goal definition example

Analyze	Objects(s) of study stereotyped UML diagrams
for the purpose of	Purpose evaluating their usefulness
with respect to their	Quality focus comprehension
from the point of view of	Perspective researcher and project manager
in the context of	Context research associates, undergraduate students graduate students

GQM in perspective

Questions

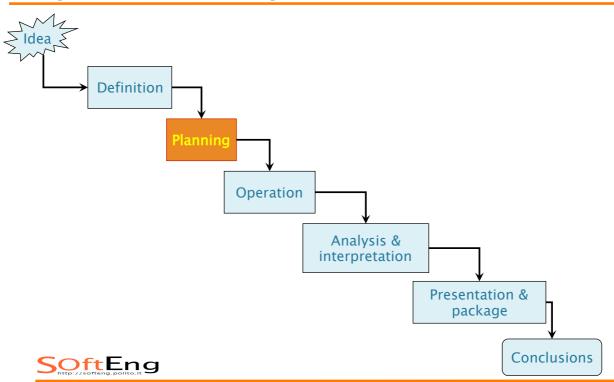
- Refinement of goals to a more operational level
 - By answering the question one should be able to conclude whether the goals has been achieved
- Expected answers can be formulated as (high level) hypotheses
- Questions may focus on different aspects of the goal

SoftEng

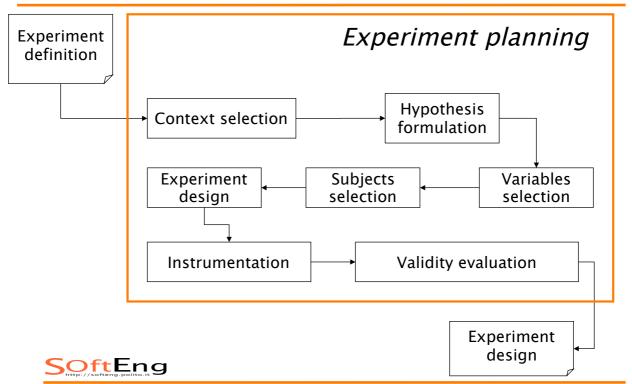
Example – Goal

- Goal: reliability
 - Analyze the product and process
 - For the purpose of characterizing
 - With respect to reliability and its causes
 - Form the point of view of the software development team
 - In the context of project A

Example – Questions


- Product definition
 - Does the sw adhere to coding standards
 - What is the complexity of sw?
- Quality
 - What is the distribution of failures?
 - What is the distribution of faults?
 - What was the distribution of failure handling effort?
 - What is the relationship between code reviews and reliability?

SoftEng


EXPERIMENT PLANNING

SoftEng

Experimental process

Experiment planning: 7 steps

Context selection

- The content of the experiment is characterized according to 4 dimensions:
 - Off line vs Online
 - Student vs Professional
 - Toy vs real Problem
 - Specific vs General

Hypothesis formulation

- Two hypotheses to be formalized
 - Null hypothesis H₀
 - no real underlying trends or patterns in the experiment setting
 - Alternative hypothesis H_a
 - There exists real underlying trends or patterns in the experiment setting
- If we investigate the existence of a pattern, the null hypothesis must state that no patterns exist

SoftEng

Scientific method

- Conjecture (P)
 - Administration of treatment has influence on some feature
- Consequence (Q)
 - We observe a difference in terms of some feature

If P, then Q

Falsification (modus tollens)

- We aim at verifying ~Q
 - The opposite of the consequence
 - We test the null hypothesis
 - If verified we can conclude the conjecture is false
- Aiming at verifying Q is wrong
 - Provides no insight on the conjecture
 - Affirming the consequent

35

Example

- Question
 - Do code review affect quality?
- Conjecture (P)
 - Code reviews reduce defects
- Hypothesis alternative (Q)
 - When code reviews are applied we observe fewer defects than when they are not applied
- Hypothesis null (~Q)
 - We observe no difference in terms of defects when code reviews are applied or not

Example

- Outcome of the experiment
 - We confirm the null hypothesis (~Q)
 - We conclude that code reviews do not reduce defects (~P)
 - ~Q => ~P
 - The conjecture has been falsified
 - We reject the null hypothesis
 - We are more confident that is likely that code reviews reduce defects (P)
 - Q 🗾 P
 - The conjecture has been corroborated

SoftEng

Variable selection

- Independent variables
 - Variables that we can control

 Treatment
 - Variables that we can monitor
 - Context and domain
 - Possible confounding factors
- Dependent variables
 - Allow measure the effect of treatments
 - Sometimes they cannot be measured directly
 - Use of proxies

SoftEng.

Subjects selection

- Subjects are selected from a population:
 - Probability sampling

 Simple random, systematic, stratified
 - Non probability sampling
 Convenience, guota
- Related to the level of generalization of the experiment

SoftEng.

Subjects selection

- General principles
 - The larger the variation of the population is, the larger is the sample size needed
 - Analysis of data may influence choice of sample size: consider how to analyze data since design stage

Design

- Experiment = series of trials
 - Number of factors and treatments determines design type and data analysis
- Memento:
 - Design and interpretation of results are closely related: the choice of design affects the analysis and vice versa

SoftEng.polito.it

Design

- General design principles
 - Randomization
 - Blocking
 - Balancing

Randomization

- Used to
 - average the effects of a factor that may otherwise be present
 - select representative subjects for the population they come from
- Applies on
 - allocation of the objects
 - allocation of the subjects
 - order the tests are performed

SoftEng

Blocking

- Used to eliminate the undesired effect of a (confounding) factor we are not interested in
- Blocks are built separating by factor E.g.:
 - Block 1 : subjects with experience
 - Block 2 : subjects with no experience
- Blocks studied separately
- Effects between blocks not studied

SoftEng

Balancing

- Experiment design is balanced when treatments are assigned so that each treatment has equal number of subjects
 - Viceversa also subjects should have a burden as far as possible similar
 - Desirable because it both simplifies and strengthens the statistical analysis of data, but not necessary

SoftEng.

Design types

- For each combination of number of factors and levels, different experiment design solutions
 - One factor with two treatments
 - One factor with more than two treatments
 - Two factors with two treatments
 - More than two factors each with two treatments

Fully randomized design

- The levels of the primary factor are randomly assigned to the experimental units.
- Balance
 - Same number of replications for each level

SoftEng

Fully randomized design

- Model
 - $Y_{ij} = \mu + T_i + error$
 - Where
 - i level of the main factor
 - j replication (subject) for that level
- Estimates
 - $\mu = \overline{Y}$
 - the average of all the data
 - $\bullet \ \mathsf{T}_{\mathsf{i}} = \overline{\mathsf{Y}}_{\mathsf{i}} \overline{\mathsf{Y}}$
- Hypothesis
 - H_0 : $T_i = T_j \Leftrightarrow \overline{Y}_i = \overline{Y}_j \Leftrightarrow \mu_i = \mu_j$

SoftEng

1 Factor, 2 Treatment Levels

- Most typical and simple case
 - One of the treatments can be "absence of"
 - Does the introduction of a technique affects some output variable?

49

- Example
 - Factor: design notation
 - Treatment 1: UML
 - Treatment 2: UML w/stereotypes

SoftEng

Randomized – 1 F, 2 T

- Each subject is randomly assigned to one of the two treatments
 - Balancing
 - Comparison of subjects in two groups
- Example of hypothesis
 - H0: $\mu_1 = \mu_2$
 - + H1: $\mu_1 \neq \, \mu_2$, $\mu_1 < \, \mu_2$ or $\mu_1 > \, \mu_2$
 - Where:
 - μ_t = mean of dependent variable for subject that received treatment t

SoftEng

Randomized – 1 F, >2 T

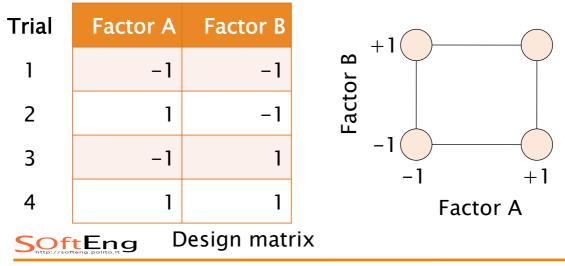
- Each subject is randomly assigned to one of the treatments
 - Balancing
 - Comparison of subjects in groups
- Example of hypothesis
 - $H_0: \mu_1 = \mu_2 = ... = \mu_n$
 - H_1 : $\mu_i \neq \mu_j$ for at least one pair (i,j)

SoftEng

OftEng

Randomized – 1 F, >2 T

Subjects	Treatment 1	Treatment 2	Treatment 3
1	X		
2		X	
3			×
4			×
5	X		
6		Х	
	\checkmark	\checkmark	\checkmark
	μ_1	μ_2	μ_3


Full factorial design L^k

- All possible combination of factor levels are observed
 - Number of factors: k
 - Number of levels per factor: L
 - Replications per trial: n
 - Sample size: n * Lk
- Balance
 - Same number of replications for each level

SoftEng.

Full factorial design 2²

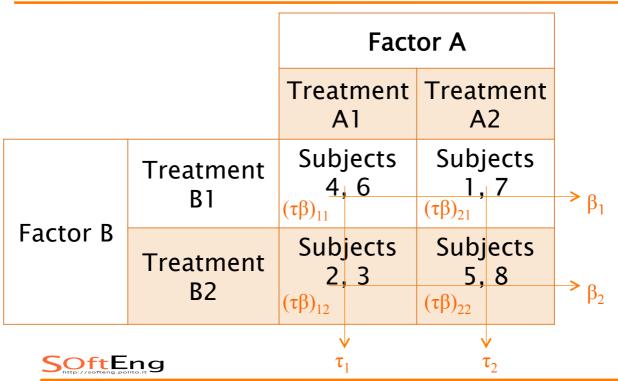
Typically factors with L=2 levels 2^k
 Levels +1, -1

Interaction

 The effect of a confactors together 	ombinatio	า of two)
Example: coffee			
Factors:		N. atta	Chilar
 Putting sugar 		No stir	Stir
 Stirring 	No Sugar	0	0
 Outcome 		Ū	Ū
• Sweetness Sugar		1	10
			55

Orthogonality

- The design matrix
 - has columns that are all pairwise orthogonal
 - all the columns sum to 0
- Eliminates correlation between the estimates of the main effects and interactions.
- Full factorial design are orthogonal


SoftEng.

Factorial design

- Two factors (k=2)
 - τ_i The effect of level *i* of factor A
 - β_i The effect of level *j* of factor B
 - $(\tau\beta)_{ij}$ The effect of the interaction between τ_i and β_i
- Example of hypotheses:
 - $H_0: \tau_1 = \tau_2$ $\beta_1 = \beta_2$ $(\tau\beta)_{ij} = 0$ for all i,j
 - H_1 : $\tau_1 \neq \tau_2$ $\beta_1 \neq \beta_2$ at leat one $(\tau\beta)_{ii}$

SOftEng

Factorial design

Factorial design – nested

2 factors, two stage nested design

		or A		
	Treatment A1		Treatr	nent A2
example	Factor B		Factor B	
	Treatment B1' B2'		Treatment B1"	Treatment B2''
	Subject: 1,3	Subject: 6,2	Subject: 7,8	Subject: 5,4

Example of hypothesis
 -same as for 2*2 factorial design

SoftEng

Factorial design - 3 Factors

More than 2 factors, 2^k factorial design

Factor A	Factor B	Factor C	Subjects
A1	B1	C1	2,3
A2	B1	C1	1,13
A1	B2	C1	5,6
A2	B2	C1	10,16
A1	B1	C2	7,15
A2	B1	C2	8,11
A1	B2	C2	4,9
A2	B2	C2	12,14

example

- Example of hypothesis

-same as for 2*2 factorial design

Randomized blocked design

- A co-factor is used as a blocking factor if every level of the primary factor occurs the same number of times with each level of the co-factor.
 - Block what you can, randomize what you cannot.
- Characteristics
 - k : number of factors
 - L_i : levels of factor *i*
 - n : replications per cell
 - Sample size: $n * \prod L_i$

61

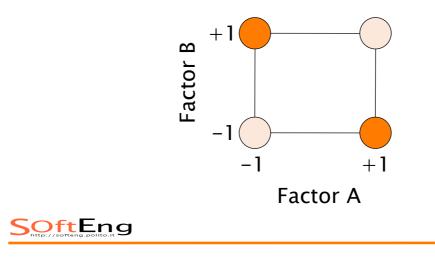
Randomized blocked design

- Model
 - $Y_{ijl} = \mu + T_i + B_j + error$
 - Where
 - i level of the main factor
 - j level of the blocking factor
 - I replication (subject) for that combination
- Estimates
 - $\mu = \overline{Y}$

- the average of all the data

- $\bullet \mathbf{T}_{i} = \overline{\mathbf{Y}_{i}} \overline{\mathbf{Y}}$
- $\bullet \mathbf{B}_{\mathbf{j}} = \overline{\mathbf{Y}_{\mathbf{j}}} \overline{\mathbf{Y}}$

SoftEng.


Blocked factorial design 2^k

 Each co-factor level occurs the same number of times for each level of any main factor.

Trial	Factor A	Factor B	A*B	Block
1	-1	-1	1	B1
2	1	-1	-1	B2
3	-1	1	-1	B2
4	1	1	1	B1
	J			

Blocked factorial design

 Each co-factor level occurs the same number of times for each level of any main factor.

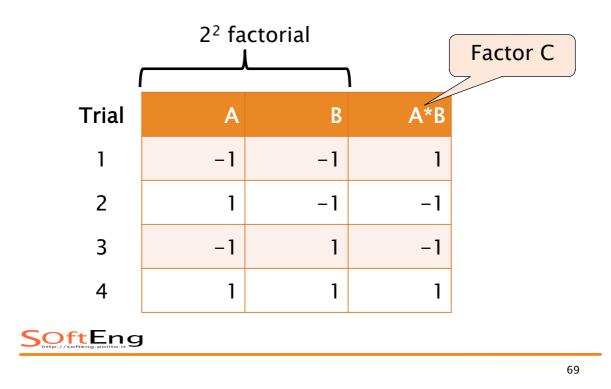
Latin square designs

- One main factor and two co-factors
 - Allow experiments with a relatively small number of runs
 - Number of levels of each blocking variable must equal the number of levels of the treatment factor
 - No interactions between the blocking variables or between the treatment variable and the blocking variable.

SoftEng.

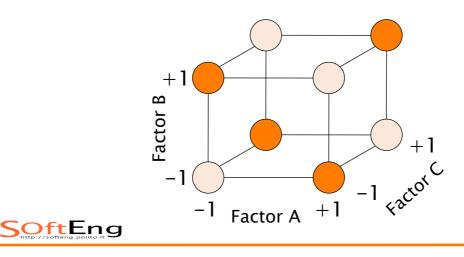
3 x 3 Latin square

- One Main factor
 - Diagram: Informal, UML, UML w/stereotypes
- Two Co-factors:
 - Experience: Low, Medium, High
 - Model size: Small, Medium, Large
- Number of trials:
 - Fully blocked: 27 (= L_{diagram} * L_{Experience} * L_{Size})
 - Latin square: 9


SoftEng.

3x3 Latin square Experience Medium High Low UML w/ Small Informal UML stereotypes Model Size UML w/ Medium Informal UML stereotypes UML w/ Large Informal UML stereotypes 67

Fractional design L^{k-p}


- Only an adequately chosen fraction of the treatment combinations required for the complete factorial experiment is selected to be run.
- Number of trials
 - Full factorial: $2^3 = 8$
 - Fractional: $2^{3-1} = 2^2 = 4$

Fractional 2³⁻¹

Fractional 2³⁻¹

- Design generator (generating relation)
 - $C = A^*B \rightarrow dark corners$
 - C= $-A^*B \rightarrow \text{light corners}$

Fractional design

2³⁻¹ fractional

	Factor A	Factor B	Factor C	Subjects
Example	A1	B1	C2	2,3
one-half fraction of	A2	B1	C1	1,8
the 2 ³⁻¹ factorial	A1	B2	C1	5,6
design	A2	B2	C2	4,7

- Example of hypothesis -same as for 2*2 factorial design

SoftEng

Randomized – 1 F, 2 T

	Subjects	Treatment 1	Treatment 2
	1	×	
_	2		X
ovampla	3		X
example -	4	X	
	5		X
	6	×	
_		\checkmark	V
		μ_1	μ_2

Paired designs - 1 F, 2 T

- Each subject is assigned to both treatments in two distinct trials
 - Order must be randomized
 - Check for individual difference
- Example of hypothesis
 - H_0 : $\mu_d = 0$
 - + $H_1 : \, \mu_d \neq \, 0$, $\mu_d < \, 0 \, \, or \, \, \mu_d > \, 0$
 - Where
 - Defined y_{ij} as the measure of output variable for subject *j* when assigned to treatment *i*
 - μ_d is the mean of the individual differences $d_j^{}=y_{1j}^{}-y_{2j}^{}$

SoftEng.

Paired – 1 F, 2 T

	Subjects	Treatment 1 Treatment	2
example	1	trial 1 🔶 🔶 trial 2	
	2	trial 2 < 🔶 trial 1	
	3	trial 1 < 🔶 trial 2	
	4	trial 1 < 🔶 trial 2	
	5	trial 2 🔶 🔶 trial 1	
	6	trial 2 🔶 🔶 trial 1	
		✓	
		μ_{d}	

Complete blocked- 1 F, >2 T

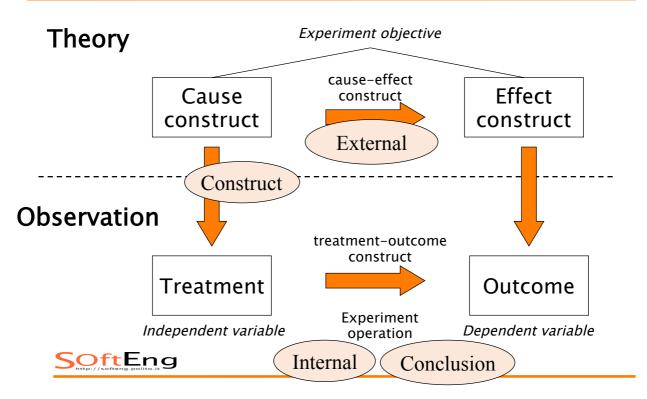
- Each subject is assigned to each treatment
 - The order is randomized (and balanced)
 - Comparison of subjects in groups
- Example of hypothesis
 - $H_0: \mu_1 = \mu_2 = ... = \mu_n$
 - H_1 : $\mu_i \neq \mu_j$ for at least one pair (i,j)

SoftEng

Complete blocked – 1 F, >2 T

Subjects	Treatment 1	Treatment 2	Treatment 3
1	Tri <mark>a</mark> l 1	Tri <mark>a</mark> l 3	Trial 2
2	Trial 3	Tri <mark>al 1</mark>	Trial 2
3	Trial 2	Trial 3	Trial 1
4	Trial 2	Tri <mark>a</mark> l 1	Trial 3
5	Trial 3	Tri <mark>al 2</mark>	Trial 1
6	Trial 1	Tri <mark>al 2</mark>	Trial 3
	\checkmark	\checkmark	\checkmark
	μ_1	μ_2	μ_3

Instrumentation


- Goal of instrumentation :
 - provide means for performing the experiment and monitor it, without affecting the control of the experiment
- Instruments are of three types
 - Objects
 - Guidelines
 - Measurement tools

SoftEng.

Validity evaluation

- Adequate validity is obtained when results are valid for the population to which we would like to generalize
- Threats to validity are limitations to the adequate validity
- There are 4 types of threats:
 - Conclusion
 - Internal
 - Construct
 - External

Validity evaluation

Conclusion validity

- Conclusion validity
 - Threats concerning the statistical issues that can affect the ability to draw the correct conclusion about the relationship between treatments and outcome

Internal validity

- Internal validity
 - Threats concerning issues that lead to indicate a causal relationship, when there is none
 - The extent to which the behavior observed in the experiment could be due to disturbing factors instead of the treatments

SoftEng.polito.it

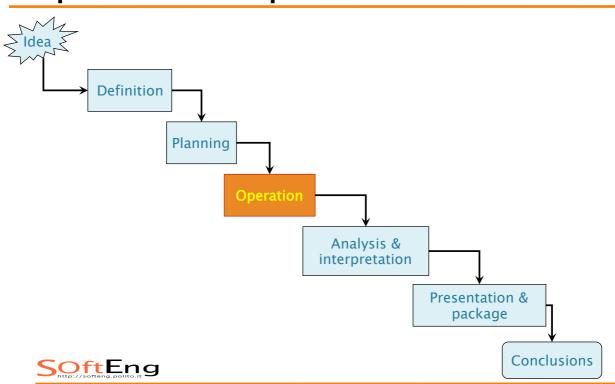
Construct validity

- Construct validity
 - Threats concerning issues related to the relationship between
 - cause construct and treatment
 - effect construct and outcome
 - They refer to the extent to which the experiment settings actually reflect the construct under study

External validity

- External validity
 - Can the result of the study be generalized outside the scope of the study ?

SoftEng.polito.lt


Validity evaluation

- For each threat type, a list of threats is available in [Cook79] and [Campbell63]
- Priority among the threats is a matter of optimization
- Possible rank in theory testing:
 - Internal construct conclusion external
- Possible rank in applied research:
 - Internal external construct conclusion

OPERATION

Experimental process

85

Operation

- Preparation
 - Get participants
 - Ethical issues
 - Privacy issues
- Execution
 - Data collection
- Data validation

SoftEng.polito.it

87

Privacy

- In Italy there is quite a strict law:
 - http://www.garanteprivacy.it/garante/ document?ID=1219452
 - Section 7 provides a list of the rights of the subject,
 - Section 13 details the information to be provided to the subjects

Privacy

- Information to be provided
 - Purposes and modalities of the processing for which the data are intended
 - Nature of providing the requested data
 - Consequences of denial to reply
 - Entities or categories of entity of data communication and dissemination
 - Rights
 - Responsible for the data

SoftEng

Privacy information

- Purposes and modalities of the processing for which the data are intended
 - The data you provide will be handled for statistical and sceintific purposes, aimed at investigating the details of software development. The handling will be carried on by electronic means.
- Nature of providing the requested data
 - The participation in the investigation is voluntary.
- Consequences of denial to reply
 - Denying to answer will have no consequence.
- Entities or categories of entity of data communication and dissemination
 - Personal data collected during the investigation will be shared only among the researchers involved in the project.

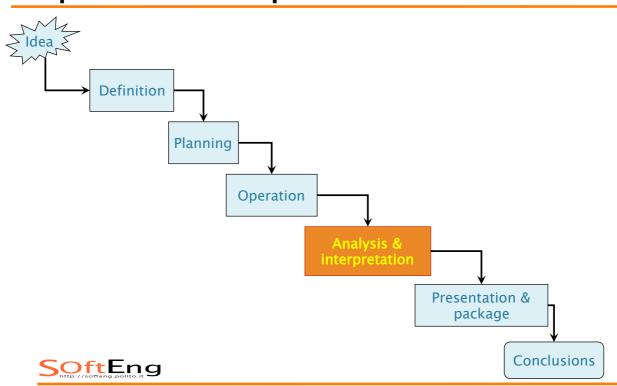
89

Privacy information

- Rights
 - At any time you will be able to exert your rights with the responsible for the data handling, according to section 7 of D.lgs. 196/2003, which we copy integrally:
 - **•**
- Responsible for the data
 - The responsible for data treatment is ...

SoftEng

91


Execution

- Data collection
 - Manually entered by participants
 - Tool supported
 - Interviews
 - Automatic
- Experimental environment

ANALYSIS AND INTERPRETATION

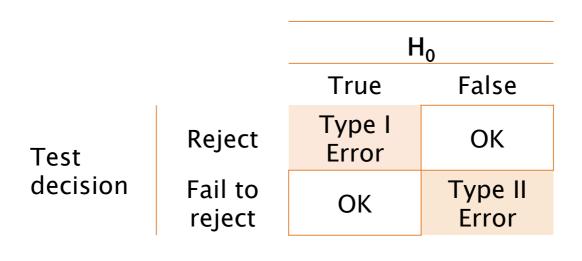
SoftEng

Experimental process

93

Analysis and interpretation

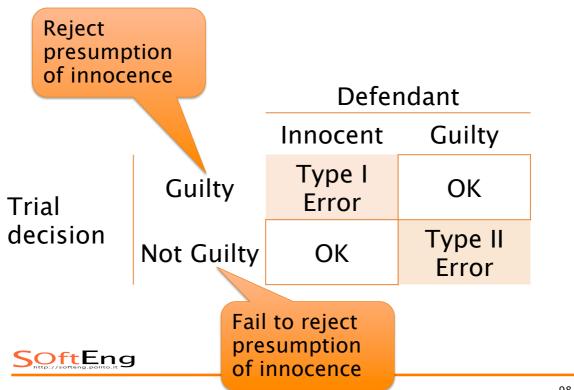
- Descriptive statistics
 - Distribution
 - Central tendency
 - Dispersion
 - Visualization
- Data reduction
- Hypothesis testing


SoftEng.polito.it

95

Error types

- Type I error
 - When we conclude there is a trend/ pattern but actually there isn't
 - $\alpha = P(reject H_0 | H_0 is true)$
- Type II error
 - When we don't see any relation between factors and outcome, but actually there is a trend/pattern
 - $\beta = P(accept H_0 | H_0 is false)$


Error types – Hypothesis testing

SoftEng

97

Error types – Justice system

- The power of a test is the probability that the test reveal a true pattern if H₀ is false
- Power = P(reject $H_0 | H_0$ is false) = 1 - P(accept $H_0 | H_0$ is false) = 1 - P(type II error) = 1 - β

SoftEng.polito.lt

Hypothesis testing

- Steps
 - Fix the significance level (α)
 Typically in planning phase
 - Select the statistical tests
 Typically in planning phase
 - Perform the tests
 - Decide about null hypotheses
 - Reject
 - Fail to reject

Significance level α

- What is the acceptable α level in our study?
 - Level of confidence: $1-\alpha$
- Standard levels:

Significance (α)	Confidence (1–α)
5%	95%
1%	99%

101

Test

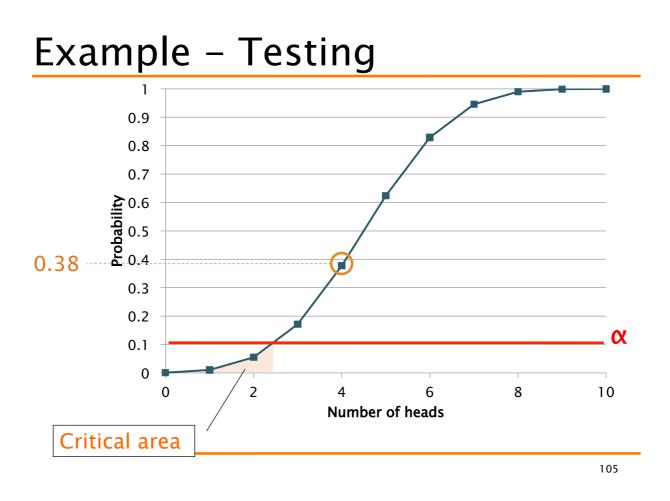
- P-value
 - probability of obtaining a test statistic at least as extreme as the one that was actually observed, assuming that the null hypothesis is true
- Decision
 - Reject when p-value $< \alpha$
 - Fail to reject when p-value > α

Example – Hypothesis

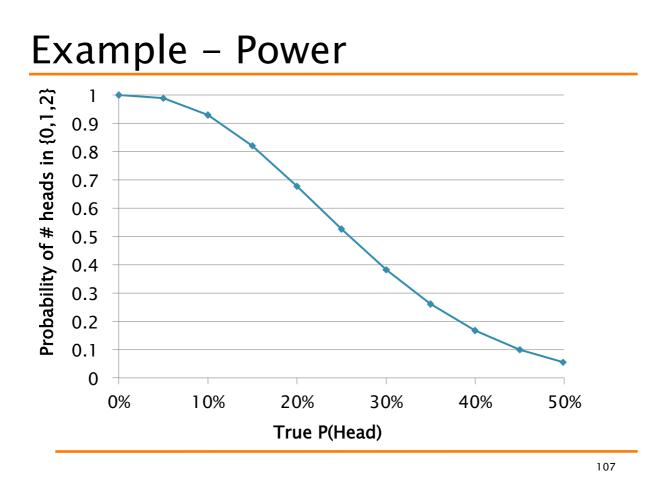
- Conjecture:
 - coin is "tricky" and disfavors heads
- Consequence:
 - as a result of a series of tosses the number of heads is smaller than the number of tails.
- Hypotheses
 - H_0 : Heads = Tails = # Tosses / 2
 - H_a: Heads < Tails
- We assume $\alpha = 10\%$

SoftEng

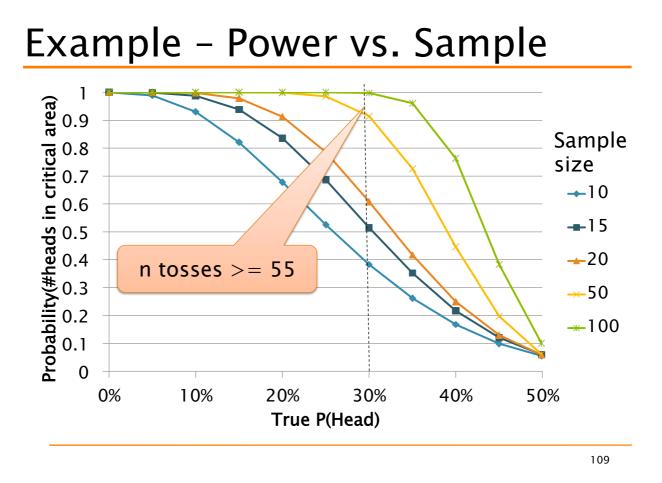
103

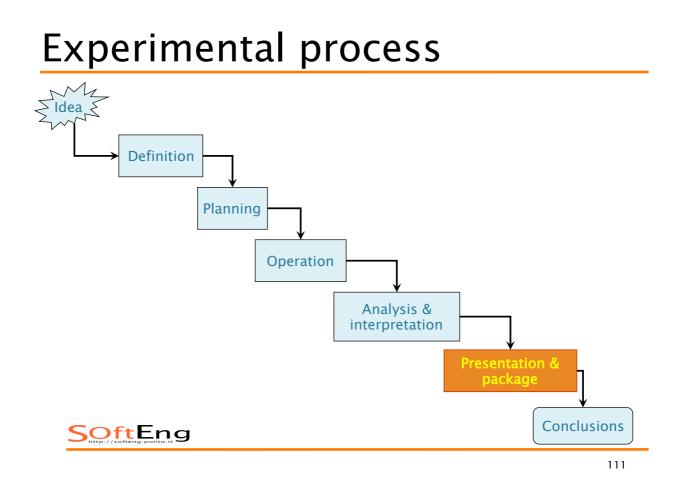

Example – Experiment

Experiment result: 4 heads in 10 trials


- Assuming H₀ is true, what is the probability of having 4 or less heads in 10 trials?
 - Binomial distribution
 - Cumulative function

Example – Power


- What is the real capability of the previous experiment to discover a tricky coin?
 - Power
- Assuming H₀ is false (H_a is true) what is the probability of rejecting H₀?
 - We reject H₀ if we are in the critical area
 In the example above: # Heads in {0, 1, 2}
 - H_a is true if P(Head) < 0.5


Example – Power

- Let's suppose we suspect that heads show up just 30% of the times
 - P(Head) = 30%
- How many trials should we run to have at least 95% of chances to discover such a bias?
 - Power > 0.95

SoftEng.polito.lt

PRESENTATION AND PACKAGING

Reporting

- Introduction
- Problem statement
- Experiment planning
- Operation
- Data analysis
- Interpretation
- Discussion and conclusions

SoftEng.polito.lt

APA Guidelines

- Abstract
- Introduction
- Method
 - Design
 - Subjects / Participants
 - Apparatus/Materials
 - Procedure
- Results
- Discussion

SoftEng.polito.it

113

Replication package

- "Laboratory packages" (Basili et al., 1999; Shull et al.; 2002; Ciolkowski et al., 2002)
- Fundamental to allow replication
 - Analysis and goals of the experiment
 - Motivation for the design decisions
 - Experimental design, including validity threats and strengths
 - Context in which the experiment was carried on
 - Procedure
 - Analysis methods

Online databases

- Promise
 - http://promisedata.org/?cat=11
- Floss metrics
 Free/Libre and Open Source Software Metrics
 - http://melquiades.flossmetrics.org/
- Sw Lifecycle Empirical DB
 - http://www.thedacs.com/databases/sled/

SoftEng.

115

The Data & Analysis Center for Software

Bibliography

- Claes Wohlin, Per Runeson, Martin Host, Magnus Ohlsson, Bjorn Regnell, Anders Wesslen. 2000. Experimentation in Software Engineering – An Introduction. Kluwer.
- Basili, Victor; Gianluigi Caldiera, H. Dieter Rombach (1994). "The Goal Question Metric Approach"
 - ftp://ftp.cs.umd.edu/pub/sel/papers/gqm.pdf
- Van Solingen, Rini; Egon Berghout (1999). The Goal/Question/Metric Method. McGraw-Hill Education.

Bibliography

- Regnell, Björn, Per Runeson, and Thomas Thelin. "Are the perspectives really different?further experimentation on scenario-based reading of requirements." Empirical Software Engineering 5.4 (2000): 331-356.
- Ricca, Filippo, et al. "How Developers' **Experience and Ability Influence Web Application Comprehension Tasks Supported** by UML Stereotypes: A Series of Four Experiments." Software Engineering, IEEE Transactions on 36.1 (2010): 96-118.

OftEng

117

License (1)

- THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CREATIVE COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS PROHIBITED.
- BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. THE LICENSOR GRANTS YOU THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF SUCH TERMS AND CONDITIONS.
- 1. Definitions
 - **"Collective Work"** means a work, such as a periodical issue, anthology or encyclopedia, in which the Work in its entirety in unmodified form, along with a number of other contributions, constituting separate and independent works in themselves, are assembled into a collective whole. A work that constitutes a Collective Work will not be considered a Derivative Work (as defined below) for the purposes of this License.
 - "Derivative Work (as defined below) for the purposes of this License. "Derivative Work" means a work based upon the Work or upon the Work and other pre-existing works, such as a translation, musical arrangement, dramatization, fictionalization, motion picture version, sound recording, art reproduction, abridgment, condensation, or any other form in which the Work may be recast, transformed, or adapted, except that a work that constitutes a Collective Work will not be considered a Derivative Work for the purpose of this License. For the avoidance of doubt, where the Work is a musical composition or sound recording, the synchronization of the Work in timed-relation with a moving image ("synching") will be considered a Derivative Work for the purpose of this License.
 - "Licensor" means the individual or entity that offers the Work under the terms of this License.
 - "Original Author" means the individual or entity who created the Work.
 - "Work" means the copyrightable work of authorship offered under the terms of this License.
 - "You" means an individual or entity exercising rights under this License who has not previously violated the terms of this License with respect to the Work, or who has received express permission from the Licensor to exercise rights under this License despite a previous violation.
- 2. Fair Use Rights. Nothing in this license is intended to reduce, limit, or restrict any rights arising from fair use, first sale or other limitations on the exclusive rights of the copyright owner under copyright law or other applicable laws.
- 3. License Grant. Subject to the terms and conditions of this License, Licensor hereby grants You a worldwide, royalty-free, non-exclusive, perpetual (for the duration of the applicable copyright) license to exercise the rights in the Work as stated below:
 - to reproduce the Work, to incorporate the Work into one or more Collective Works, and to reproduce the Work as incorporated in the Collective Works; to distribute copies or phonorecords of, display publicly, perform publicly, and perform publicly by means of a digital audio transmission the Work including as incorporated in Collective Works; a. b.

The above rights may be exercised in all media and formats whether now known or hereafter devised. The above rights include the right to make such modifications as are technically necessary to exercise the rights in other media and formats, but otherwise you have no rights to make Derivative Works. All rights not expressly granted by Licensor are hereby reserved, including but not limited to the rights set forth in Sections 4(d) and 4(e).

License (2)

- **4. Restrictions.**The license granted in Section 3 above is expressly made subject to and limited by the following restrictions:
 - You may distribute, publicly display, publicly perform, or publicly digitally perform the Work only under the terms of this License, and You must include a copy of, or the Uniform Resource Identifier for, this License with every copy or phonorecord of the Work You distribute, publicly display, publicly perform, or publicly digitally perform. You may not offer or impose any terms on the Work that alter or restrict the terms of this License or the recipients' exercise of the rights granted hereunder. You may not sublicense the Work. You must keep intact all notices that refer to this License and to the disclaimer of warranties. You may not distribute, publicly display, publicly perform, or publicly digitally perform the Work with any technological measures that control access or use of the Work in a manner inconsistent with the terms of this License Agreement. The abuve applies to the Work as incorporated in a Collective Work. Agreement. The above applies to the Work as incorporated in a Collective Work, but this does not require the Collective Work apart from the Work itself to be made subject to the terms of this License. If You create a Collective Work, upon notice from any Licensor You must, to the extent practicable, remove from the Collective Work any credit as required by clause 4(c), as requested.
 - You may not exercise any of the rights granted to You in Section 3 above in any manner that is primarily intended for or directed toward commercial advantage or private monetary compensation. The exchange of the Work for other copyrighted works by means of digital file-sharing or otherwise shall not be considered to be intended for or directed toward commercial advantage or private monetary compensation, provided there is no payment of any monetary compensation in connection with the exchange of copyrighted works. b.
 - the exchange of copyrighted works. If you distribute, publicly display, publicly perform, or publicly digitally perform the Work, You must keep intact all copyright notices for the Work and provide, reasonable to the medium or means You are utilizing: (i) the name of the Original Author (or pseudonym, if applicable) if supplied, and/or (ii) if the Original Author and/or Licensor designate another party or parties (e.g. a sponsor institute, publishing entity, journal) for attribution in Licensor's copyright notice, terms of service or by other reasonable means, the name of such party or parties; the title of the Work if supplied; and to the extent reasonably practicable, the Uniform Resource Identifier, if any, that Licensor specifies to be associated with the Work, unless such URI does not refer to the copyright notice or licensing information for the Work. Such credit may be implemented in any reasonable manner; provided, however, that in the case of a Collective Work, at a minimum such credit will appear where any other comparable authorship credit appears and in a manner at least as prominent as such other comparable authorship credit. For the word ance of doubt where the Work is a musical composition: c.
 - d. For the avoidance of doubt, where the Work is a musical composition:
 - Performance Royalties Under Blanket Licenses. Licensor reserves the exclusive right to collect, whether individually or via a performance rights society (e.g. ASCAP, BMI, SESAC), royalties for the public performance or public digital performance (e.g. webcast) of the Work if that performance is primarily intended for or directed toward commercial advantage or private monetary compensation. i.
 - Mechanical Rights and Statutory Royalties. Licensor reserves the exclusive right to collect, whether individually or via a music rights agency or designated agent (e.g. Harry Fox Agency), royalties for any phonorecord You create from the Work ("cover version") and distribute, subject to the compulsory license created by 17 USC Section 115 of the US Copyright Act (or the equivalent in other jurisdictions), if Your distribution of such cover version is primarily intended for or directed toward commercial advantage or private monetary compensation. ii. private monetary compensation.
 - Webcasting Rights and Statutory Royalties. For the avoidance of doubt, where the Work is a sound recording, Licensor reserves the exclusive right to collect, whether individually or via a performance-rights society (e.g. SoundExchange), royalties for the public digital performance (e.g. webcast) of the Work, subject to the compulsory license created by 17 USC Section 114 of the US Copyright Act (or the equivalent in other jurisdictions), if Your public digital performance is primarily intended for or directed toward commercial advantage or private monetary compensation.

License (3)

5. Representations, Warranties and Disclaimer

- UNLESS OTHERWISE MUTUALLY AGREED BY THE PARTIES IN WRITING, LICENSOR OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND CONCERNING THE WORK, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTIBILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF LATENT OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY TO YOU.
- 6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
- 7. Termination
 - This License and the rights granted hereunder will terminate automatically upon any breach by You of the terms of this License. Individuals or entities who have received Collective Works from You under this License, however, a.
 - of this License. Individuals or entities who have received Collective Works from You under this License, however, will not have their licenses terminated provided such individuals or entities remain in full compliance with those licenses. Sections 1, 2, 5, 6, 7, and 8 will survive any termination of this License. Subject to the above terms and conditions, the license granted here is perpetual (for the duration of the applicable copyright in the Work). Notwithstanding the above, Licensor reserves the right to release the Work under different license terms or to stop distributing the Work at any time; provided, however that any such election will not serve to withdraw this License (or any other license that has been, or is required to be, granted under the terms of this License), and this License will continue in full force and effect unless terminated as stated above.

8. Miscellaneous

- Each time You distribute or publicly digitally perform the Work or a Collective Work, the Licensor offers to the recipient a license to the Work on the same terms and conditions as the license granted to You under this License.
- If any provision of this License is invalid or unenforceable under applicable law, it shall not affect the validity or enforceability of the remainder of the terms of this License, and without further action by the parties to this agreement, such provision shall be reformed to the minimum extent necessary to make such provision valid and enforceable.
- No term or provision of this License shall be deemed waived and no breach consented to unless such waiver or c. consent shall be in writing and signed by the party to be charged with such waiver or consent.
- This License constitutes the entire agreement between the parties with respect to the Work licensed here. There are no understandings, agreements or representations with respect to the Work not specified here. Licensor shall not be bound by any additional provisions that may appear in any communication from You. This License may not be modified without the mutual written agreement of the Licensor and You.