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Classification and analysis of communication
protection policy anomalies

Fulvio Valenza, Cataldo Basile, Daniele Canavese and Antonio Lioy

Abstract—This paper presents a classification of the anomalies
that can appear when designing or implementing communication
protection policies. Together with the already known intra- and
inter-policy anomaly types, we introduces a novel category, the
inter-technology anomalies, which arise among configurations
of security controls implementing different technologies, both
within the same network node and among different network
nodes. Through an empirical assessment, we proved the practical
significance and the impact on security of detecting the novel
category of anomalies. Furthermore, this paper introduces a
formal model, based on first-order logic rules, that analyses
the network topology and security controls at each node and
identifies, categorize, and reports users on the detected anomalies
and the strategies to resolve them. The formal model has
manageable computational complexity and its implementation
has showed excellent performances and promising scalability
properties.

Index Terms—security policies, policy conflicts, policy analysis

I. INTRODUCTION

Enforcing the security in a system is obviously a very
complex and delicate task. Security administrators have a
hard work to accomplish, a work that requires very specific
skills and a high level of competence. However, in the last
years, several studies have confirmed their responsibilities
in most of the security breaches and breakdowns. Wool [1]
showed that most of the firewalls he analyzed contained several
problematic policies such as very lax rules. The Data Breach
Investigations Report [2] states that about the 60% of the
security breaches are due to errors and mistakes made by the
internal staff.

On one hand, when looking for the security problem causes,
a US government funded study reported years ago that the
skills and competence of security administrators were strongly
decreased [3]. On the other hand, administrators often have
basic or no tool support to debug the security controls con-
figurations in order to check if the enforced policy is correct
and compliant to the high-level security requirements.

Configuration analysis methods, which may be very impor-
tant to detect and correct errors, have been seldom incorpo-
rated into industrial grade tools. The only notable exception
is the detection of the packet filter anomalies classified by Al-
Shaer [4]. In some cases, porting some of these methods is
hard because computation complexity makes them unusable
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or because they consider scenarios that are too far from the
reality.

The main contribution of this paper is a formal model
that can be used to assist the security administrators when
configuring and validating security policies, thus bridging the
gap between theory and practice. In particular, we focus on
communication protection policies (CPPs), that is regulations
that determine how to protect corporate assets, such as private
user data and corporate intellectual properties, when they
are transferred over computer networks. CPPs originate from
laws (e.g., the EU privacy law [5]) and business security
requirements. In some cases, like companies that host services
or provide cloud-based resources, they may be very complex
and articulated. CPPs are often expressed with very high-level
directives that specify what are the security properties that
the communications must guarantee (e.g. confidentiality and
integrity). However, in the end, they are enforced by means
of a plethora of security controls, which implement different
protocols (e.g. IPsec, TLS, WS-Security) that operate at differ-
ent layers of the ISO/OSI stack. Therefore, the administrators
manually determine the end-to-end channels and tunnels to
establish, the resources that need to be accessed through secure
protocols and the data that need to be protected with message
protection techniques. Incorrect implementation of CPPs can
result in information disclosure that can cause, for instance,
violations of the users privacy, loss of intellectual properties
and, eventually, huge money losses.

In the CPPs enforcement scope, several actors are autho-
rized to their enforcement: service administrators, which have
to enable channel protection protocols like SSL/TLS on the
services they manage, network administrators, which have to
configure secure tunnels and end-to-end channels at network
and data link level and to enable wireless protection, and other
high level roles, sometimes referred to as IT managers (or
IT security managers), which interact with business units to
determine the communications to protect.

The fact that several entities are involved in the implemen-
tation of the CPPs together with the large size and complexity
of the networks to configure increases the risk of mistakes,
like conflicting implementations of the policies, and redundant
channels.

The approach we follow in this paper is to detect and show
the administrators the anomalies, that are, as defined by Al-
Shaer, the presence of redundant or conflicting configuration
rules. Anomalies are particular situations that can be the
evidence of a human error and thus deserve the explicit
attention of the administrators.

Our model can be used in two different scenarios: both
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design validation and implementation analysis. For the design
validation, the administrator has to provide the communica-
tions he has to protect, the security properties to be enforced
and the technology he wants to use. For the implementation
analysis, the administrator instead has to provide the configu-
rations of all the protection controls. After having determined
the communications to be protected, the model then is able to
detect several kind of anomalies such as redundant, insecure,
non-enforceable and filtered communications.

This paper is structured as follows. Section II lists our
contributions to the current state-of-the art. Section III and IV
informally introduce our approach by presenting a brief back-
ground and a motivating example. Section V and VI are
the core of this paper, by describing the formal structures
and the formulas of our model. Section VII describes the
graphical notations for reporting the anomalies. Section VIII
contains the complexity and performance analysis of the
presented approach together with an empirical study. Finally,
Sections IX and X respectively contains the related works and
the conclusions.

II. CONTRIBUTIONS

Our work pushes the state of the art in several directions.
The main contribution of this paper is the identification of
nineteen types of anomalies that may happen when configuring
the CPPs. Six anomaly types were already known in literature
[6], however, most of them are original contributions of this
paper1. It is worth noting that our classification includes all
the data protection anomalies identified in previous works that,
however, find a place in a bigger landscape. The anomalies
we identified arise in the configuration of the same security
control (intra-policy), between configurations of the same type
displaced in different network nodes (inter-policy), and, our
novel contribution, among configurations of security controls
implementing different technologies, both within the same
network node and among different network nodes (inter-
technology). We focus on communication protection controls
that work at four network layers: data link, network, session2,
and application layer.

As an example, inter-policy anomalies may appear between
the configurations of two IPsec VPN gateways, while inter-
technology anomalies may appear between the IPsec and TLS
configurations of a web server on the same network node,
or amongst the WS-Security configuration of a web service
and the OpenVPN gateway that tunnels the communications
between corporate networks. Moreover, we identify also com-
munications that are intrinsically insecure or non-enforceable
by the security control to which they are intended to.

Anomalies are detected by means of a formal model that
takes as input the network topology, the available security
controls at each node, the communication to secure (or the

1An embryonal and incomplete set of anomalies has been published in a
previous work [7]. This paper is a much more comprehensive, precise, and
coherent extension of the previous work.

2Protections at transport layer, such as SSL/TLS, are sometimes associated
to the session layer as they work on top of the TCP/UDP protocols. We do
not want to enter a philosophical diatribe as for our purposes the important
thing is the order of encapsulation of different protections.

communications actually secured in case of the implementa-
tion analysis). This information is included in a knowledge
base that is explored by a set of first-order logic (FOL)
formulas used to identify and reported to the users the detected
anomalies.

Anomalies have been categorized according to two different
classifications: an effect-based and information-centric tax-
onomies. The first one divides the anomalies into five macro-
categories describing the effects that they have on the network,
that is: 1) insecure communications; 2) unfeasible communi-
cations; 3) potential errors; 4) suboptimal communications;
5) suboptimal walks. The second classification is based on the
information that need to be analysed to detect the anomalies.
It split the anomalies in three classes: 1) anomalies in a
single communication channel; 2) anomalies between secure
channels that starts at or end on the same node; 3) anomalies
that are only evident if the full network information (nodes and
topology) and high-level security requirements are considered.

Having introduced several new kind of anomalies, we posed
ourselves several questions regarding the impact of our work:

1) is detecting these anomalies important and helpful to
improve the security of the current IT infrastructures?

2) are these anomalies actually introduced by the adminis-
trators when they implement their policies?

3) is computationally effective to compute them also in large
networks?

In order to answer the first question, we have presented
for each of the anomalies the possible consequences on
the network and some ways to resolve them to reduce the
security impacts on the short and long period (see Section VI).
To answer the second question, we prepared an empirical
experiment where three categories of administrators (experts,
intermediate, beginners) were asked to configure a set of
CPPs in a sample network. We noticed that several of the
newly introduced anomalies appeared (see Section VIII-A).
And finally, to answer the last question, we implemented a
tool making use of DL (description logic) ontologies and
some custom Java-based reasoning rules. We performed an
extensive testing of its speed in several different scenarios (see
Section VIII-C).

III. BACKGROUND

We introduce here the main concepts and terms that we will
use throughout the rest of the paper.

A communication is any directional data exchange between
two network entities. Amongst them, we define a secure com-
munication as a communication that is ‘adequately’ protected,
that is it fully satisfies a set of security requirements. In
this context, the security requirements concern three security
properties: header integrity, payload integrity and (payload)
confidentiality.

We call a security gateway, or simply a gateway, a network
node that is able to terminate a secure communication. Note
that clients and servers may also act as gateways, thus, the
name ‘gateway’ does not imply necessarily a custom device.

A channel is an atomic directional data exchange with no
security property checks occurring between its end-points (no
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decryption or integrity verification). A communication can
be thought as an ordered sequence of several (secure and/or
insecure) channels.

In the real world, the various communications are defined by
using a set of configurations settings containing several low-
level details. For instance, the configuration of a TLS server
contains detailed information about the supported cipher-
suites, often listed in a preference order. During the design
and policy analysis phases, however, such level of granularity
is usually not needed. For our purposes, a secure channel can
be represented by specifying: 1) the source and the destination
entities. They can be network nodes or direct references to an
entity lying at a particular ISO/OSI layer such IP addresses
and URIs; 2) the security protocol to use. Our model can
be easily extended to new protocols and can support a wide
array of technologies at different ISO/OSI layers; 3) the
required security properties; 4) the crossed gateways and the
source protected nodes, meaningful only in case of tunneling.
We name this formal representation of a channel a policy
implementation, or PI for short. Note that since a channel is
directional, a PI is directional too. That means that to create
a complete request-reply connection we need at least two PIs.
More information on this subject is available in Section V.

We call a PI set a group of policy implementations that
belong to the same node and have the same technology. For
instance, a particular server supporting IPsec and SSH will
have two PI sets, one for each protocol. We will assume that
the policy implementations in the same PI set are ordered
according to their priority.

Note that in order to perform our analysis, we will make
use of other additional sources of information such as:
• network reachability data. The configurations of filtering

controls and NAT devices must be available to determine
if the channels can be actually established (e.g. to check
if a channel is not dropped by a firewall);

• the supported security protocols (at various ISO/OSI
levels). This is needed to guarantee that it is possible
to establish the secure channels;

• the supported cryptographic algorithms. Depending on
the installed security controls, some cipher-suites might
not be available when actually deploying a PI.

Finally, we will refer to the network topology as a graph
where its nodes are potential channel end-points (both sources
and destinations) and its edges are physical or virtual connec-
tions between them.

IV. MOTIVATING EXAMPLE

Before formally tackling the analysis of the PI anomalies,
we will begin our discussion in a more informal way by
reasoning on the simplified network scenario sketched in
Fig. 1. The diagram shows a main corporate network (C) and
two branch networks (namely A and B). The three networks
are connected through the Internet and consist of a number
of security gateways (denoted by the g letter) that mediate
the communications between the servers (sc1 and sc2) and the
clients (indicated by the c symbol). The server sc1 hosts two
services (web1 and db), while sc2 hosts only one web service
(web2).

Internet

ga1ca2

ca1

ca3

gb1

cb1

cb2

gc1

gc3

gc2

sc1

sc2

db

web1

cc2

web2

cc1

cc3

A

B

C

Fig. 1: A simplified network scenario.

For now, we will use the informal notation s
t−→
P

d to
indicate a PI that establish a channel from the source s
to the destination d using the technology t to enforce the
security properties P . We will initially take into account only
two security properties, payload confidentiality and payload
integrity, respectively denoted by the c and p symbols. For
instance, the PI a IPsec−−−→

{p}
b indicates an IPsec connection with

integrity (but not confidentiality), from a to b.
For the sake of clarity, we grouped the anomalies in five

macro-categories. They are sketched in Fig. 2 and they will
be briefly described in the following paragraphs.

Inadequacy

Monitorability

Skewed channel

Asymmetric channel

Non-enforceability

Out of place

Filtered

L2

Shadowing

Exception

Correlation

Affinity

Contradiction

Redundancy

Inclusion

Superfluous

Internal loop

Alternative path

Cyclic path

Insecure communications

Unfeasible communications

Suboptimal implementations

Potential errors

Suboptimal walks

Anomalies

Fig. 2: Effect-based taxonomy.

A. Insecure communications
We have an insecure communication when its security level

is less than the expected one.
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For instance, we can have a channel that does not respect
the minimum security levels specified in the corporate policies,
thus creating an inadequacy anomaly. For example, we have
an anomaly if the IT managers state that ‘all the data crossing
the Internet must be encrypted’ and a security administrator
creates the policy implementation ca1

TLS−−−→
{p}

sc1.

Another case of inadequacy arise when the security require-
ments are respected, but we have a communication consisting
of more than one channel (e.g. remote access). Here, the nodes
in the channel junctions can ‘see’ the exchanged data, thus
lowering the security of the connection and creating a mon-
itorability anomaly. For instance, the two PIs sc1

IPsec−−−→
{c,p}

gc1

and gc1
IPsec−−−→
{c,p}

ca1 form a logical connection between sc1 and

ca1 by breaking it into two channels interconnected through
gc1. This means that, even if everything is encrypted, gc1 can
sniff it since gc1 must re-encrypt the packet received from sc1.

Another kind of insecure communication, more subtle but
potentially catastrophic, can happen with a wrong tunnel
overlapping that removes the confidentiality in a part of the
communication and produces a skewed channel anomaly. For
example, a security administrator can create the tunnel via the
PI gc3

IPsec−−−→
{c}

ga1 and another one with gc3
IPsec−−−→
{c}

gc1 (note

that the latter tunnel is ‘included’ in the first one). The trellis
diagram in Fig. 3 helps to graphically visualize the problem.

gc3 gc1 ga1

Double tunnel
Single tunnel

No tunnel

Fig. 3: Diagram of the skewed channel between gc3, gc1, ga1.

When gc3 sends some data, it encapsulates the data in
two tunnels. Hence when ga1 receives the data, it removes
only the external tunnel encapsulation, but cannot remove the
internal one, so ga1 sends the data back to gc1 that, in turn,
removes the last tunnel. Finally, gc1 sends to ga1 the data with
no protection, thus exposing the communication content to a
sniffing attempt.

In the real world, most of the connections are bidirectional,
since a request usually requires a reply. It can happen that
the request channel has a different security level w.r.t. the
reply one, generating an asymmetric channel anomaly. This
is not necessarily an issue, but it could be useful to signal this
inconsistency to the administrators, so that they can check if
the security control configurations reflect the intended network
behavior.

B. Unfeasible communications

An unfeasible communication is a communication that
cannot be established due to a hard misconfiguration. This
anomalies are very severe since they completely hinder a data
exchange.

The simplest example of an unfeasible communication is
when the security administrators write a PI with a technology
not supported by an end-point or a security level that is too
high to be enforced by the available cipher-suites. We call
this situation a non-enforceability anomaly. For instance, the
PI web2

TLS−−−→
{c}

db becomes non-enforceable if the service

administrators did not install TLS on sc2 (where web2 resides).
This PI must be obviously deployed on the source endpoint
sc2, however, if the node containing it is not sc2 we have
generated another problem, that is an out of place anomaly.

We have also a hindered connection if a channel is com-
pletely dropped by a firewall that lies on the path between
the source and destination, thus producing a filtered channel
anomaly.

Firewalls and bad server configurations are not the only
causes of an unfeasible communication. There are also techno-
logical incompatibilities between wired and wireless protocols
when performing security at the level 2 (data link) of the
ISO/OSI stack. For example, if we choose to create a channel
by using the WPA2 technology, we must be sure that the
network frames does cross wireless-enabled nodes. If one
or more crossed nodes are wired-only, then we have a L2
anomaly.

C. Potential errors

The potential errors are a class of anomalies where the
original intent of the administrators is highly unclear. Hence
their resolution require a full human inspection.

When working with a large group of PIs, it can happen
that an administrator can create a PI that intercepts all the
traffic for another one that has different security properties.
For instance, the PI ca1

TLS−−−→
{p}

web1 hides ca1
TLS−−−→
{c}

web1,

if the previous one has a higher priority. Since the first one
shadows the second one we call this anomaly a shadowing
anomaly. If the second PI instead has a higher priority we have
an exception anomaly. Exceptions are useful and are typically
used by administrators to express an ‘all but one’ rule, but we
report them for a verification.

Another kind of potential error is when we have two PIs
with the same technology and with the source and destination
on the same node. This situation can lead to an ambiguity since
sometimes a data can match multiple PIs, hence making the
intended protection level unclear. For example, web2

TLS−−−→
{c}

sc1

and sc2
TLS−−−→
{c,p}

db are ambiguous since a packet from web2

to db can match both the policy implementations. We call
this problem a correlation anomaly. Analogously, we will
have an affinity anomaly between two PIs that have different
technologies but with the source and destination on the same
node.

Finally, we have a contradiction anomaly when an admin-
istrator wants to protect a communication that should not
be protected. For example, if the IT manager defines the
policy ‘all the traffic towards the Internet must be inspected’,
while the security manager enforces that the traffic exchanged
between ca1 and sc1 must be encrypts ( PI ca1

IPsec−−−→
{c,p}

sc1). This
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leads a contradiction since the policy requires that the data
for the Internet should be monitorable, but its implementation
encrypts them.

D. Suboptimal implementations

A suboptimal implementation arises when one or more PIs
can decrease the network throughput producing some overhead
in the nodes. Their existence is usually not problematic,
but their resolution can be beneficial since it improves the
network performances and makes them less vulnerable to
DDOS attacks.

The simplest kind of suboptimal implementation happens
when an administrator deploys a PI that makes another PI
useless, as the first one can secure the communication at
the same or higher level of the second, but with a more
effective protection (e.g., longer encryption key) . For example,
two different security administrators may have independently
defined the PIs ca1

TLS−−−→
{c}

web1 and ca1
IPsec−−−→
{c,p}

sc1. The first

one is included in the latter, so that it can be safely removed.
In these cases we have a redundancy anomaly if both the PIs
have the same technology or an inclusion anomaly if they have
two different protocols.

Another type of suboptimality can arise when a tunnel
encapsulates other tunnels with a higher level of security. This
problem, a superfluous anomaly, can be resolved by simply
deleting the external, redundant, tunnel.

We can also have some channels that can be safely removed
without altering the network semantic. This happens in the
so called internal loop anomalies, where a PI source and
destination belong to the same node.

E. Suboptimal walks

A group of PIs can produce a suboptimal walk when the
path taken by the data is unnecessary long.

In large networks, a communication between two end-points
can take multiple paths, thus generating an alternative path
anomaly. These are not necessarily a misconfiguration, but
we can detect and report them to the administrators as a
safety measure. For example, the PI gc2

IPsec−−−→
{c}

gc3 forms an

alternative path w.r.t. the PIs gc2
IPsec−−−→
{c}

gc1 and gc1
IPsec−−−→
{c}

gc3.

Another cause of suboptimality happens when some data
crosses a node multiple times during its transit. This cyclic
path anomaly can be removed by removing the cycles, thus
shortening the network path.

V. PI HIERARCHICAL STRUCTURE

In this section, we will formally define what is a policy
implementation, its structure and the relationships between the
various network fields that compose it. In addition, we will
also describe the notion of path, used to detect several kind
of network anomalies.

In our model, a PI i is a tuple:

i = (s, d, t, C, S,G)

Where:
• s and d respectively represent the channel source and

destination (Section V-A);
• t is the adopted security technology (Section V-B);
• C is an ordered set of coefficients that indicate the

required security levels (Section V-C);
• S and G are respectively a list of network nodes used in

tunnels and the list of the gateways crossed by the traffic
(Section V-D).

A. Sources (s) and destinations (d)

sc1

2

3

5 5′

7′

(a) Representation of sc1.

ga1

2

3

2′

3′

(b) Representation of ga1.

Fig. 4: Graphical representation of a server and a gateway.

To perform an accurate detection of the anomalies, we
need to precisely identify the layer in the ISO/OSI stack
where a communication starts and terminates. To this purpose,
we make use of a hierarchical structure that represents the
points where the secure communication end-points can be
established. This structure has a very simple tree-like graphical
representation as shown in Fig. 4.

The root represents the network node, while all the other
remaining nodes model the available network entities in the
ISO/OSI stack. In this paper we will focus our attention only
on the data link, network, session and application layers. The
tree levels may be also associated respectively to the layer
2 addresses, IP addresses, port numbers and URIs. To avoid
ambiguity we will use the notation sc1.5′ to specify the node
labeled 5′ in the sc1 tree and so on.

Note that the gateways exposes multiple interfaces, one
for each network where they are connected to. For instance,
in Fig. 4b, we have two vertexes at layer 3 that represent
the ‘internal’ interface for the network A and an ‘external’
interface for the Internet. If a gateway supports also VPNs
via TLS tunnels (e.g. OpenVPN), we will have two additional
vertexes at the session level.

Given any two network entities e1 and e2, we can have the
following relationships:
• e1 is equivalent to e2 (e1 = e2) if they are exactly the

same entity;
• e1 dominates e2 (e1 � e2) if all the traffic starting from

(or arriving to) e2 pass through e1. Graphically that means
that e1 is an ancestor of e2 in the tree representation.
This concept is particularly useful when dealing with
security protocols working at different ISO/OSI layers.
For instance in Fig. 4a, sc1.3 dominates sc1.7′;
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• e1 is a kin of e2 (e1 ∼ e2) if e1 and e2 belong to the same
network node, but there is no equivalence or dominance
relationships amongst them. For example in Fig. 4a, sc1.5
is a kin of sc1.5′;

• e1 and e2 are disjoint (e1 ⊥ e2) if they belong to different
network nodes (and hence trees).

Note that if e1 and e2 are not disjoint (e1 6⊥ e2) that means
that they are on the same device, hence they are related by an
equivalence, dominance or kinship relationship.

B. Technologies (t)

In this paper we will take into account a limited set of
technologies, but our model is flexible enough to accommodate
any security protocol. In particular we will consider only:
• for the data link layer: WPA2 and 802.1AE MACsec;
• for the network layer: IPsec;
• for the session layer: TLS and SSH;
• for the application layer: WS-Security.
In addition we will also make use of the special NULL

technology, indicating that a communication should be created
without any kind of protection.

Similarly to the network entities, two technologies t1 and
t2 can have different relationships:
• t1 is equivalent to t2 (t1 = t2), if they are exactly the

same technology;
• t1 dominates t2 (t1 � t2) if the ISO/OSI layer of t1 is

strictly less than the t2’s one. The NULL technology is
dominated by all the other technologies;

• t1 is a kin of t2 (t1 ∼ t2) if t1 and t2 are different and
they work at the same ISO/OSI layer;

• t1 is disjoint from t2 (t1 ⊥ t2) if one technology is NULL
and the other one is not NULL.

In general the following relationships hold:

t(i) ∼ t′(i), t(2) � t(3) � t(5) � t(7)

t ⊥ NULL ∀t 6= NULL

Where t(i) and t′(i) represent two different technologies at
the ISO/OSI level i and t is a generic security technology
different from NULL.

C. Security coefficients (C)

The set of security coefficients consist of several non-
negative real values that indicate a required security level
for a specific property. The higher a value the stronger the
enforcement of a property should be. On the other hand, if
a coefficient is zero the related security property must not be
enforced. Obviously if the chosen technology is NULL, all
the coefficients are zero. These values should be estimated by
the administrators with the use of some metrics, for example
on the chosen cipher-suite (e.g. taking into account the key
length, encryption/hash algorithms and cipher mode).

In this paper we will focus our attention only on three
properties, which are header integrity (chi), payload integrity
(cpi) and (payload) confidentiality (cc), so that:

C = (chi, cpi, cc)

The relationships amongst two coefficient sets C1 and C2 are:
• C1 is equivalent to C2 (C1 = C2) if all the coefficients

of C1 are the same as their C2’s counterparts;
• C1 dominates C2 (C1 � C2) if at lest one coefficients

of C1 are strictly greater than their C2’s counterparts and
the other coefficient of C1 are not minor than their C2’s
counterparts;

• C1 is disjoint with C2 (C1 ⊥ C2) if there is nor
dominance nor equivalence relationships between C1 and
C2, that is C1 6� C2 ∧ C1 6� C2.

D. Protected nodes (S) and crossed gateways (G)
For non end-to-end channels, a policy implementation con-

tains a non-empty list S of network entities (usually a sequence
of IP addresses) representing the node interfaces whose traffic
must be protect when encapsulated into a tunnel. On the other
hand, in end-to-end channels this field is empty since there
are no tunnels.

In addition, each PIs contains an ordered set G that specifies
the list of gateway nodes ‘potentially’ crossed by the channel
traffic without taking into account the anomalies’ side effects.
This data is statically retrieved by knowing the network
topology and the content of the various routing tables. Note
that the list of crossed gateways does not contain the channel
source and destination nodes. In the following sections, we
will use the notation G∗ to indicate a list containing the PI
end-points, that is G∗ = {s} ∪G ∪ {d}. We will also denote
the list of crossed gateways in reverse order with G.

For instance, a site-to-site connection from ca1 to sc1 that
makes use of IPsec in tunnel mode between the two gateways
ga1 and gc2 is implemented by the two PIs:

i1 = (ca1, sc1, NULL, 〈0, 0, 0〉,∅, 〈ga1, gc1, gc2〉)
i2 = (ga1, gc2, IPsec, 〈3, 3, 3〉, 〈ca1〉, 〈gc1〉)

Where i1 specifies the data encapsulated in the tunnel
defined by the PI i2.

E. Paths
We will now introduce the concept of path, which is strictly

related to the notion of policy implementation. The notation
P e1,en represents a possible path starting from the network
entity e1 and terminating into the network entity en. Each
path is a list of policy implementations (i1, i2, . . . , in) where:
• the source of the first PI i1 is e1;
• the destination of the last PI in is en;
• given two consecutive PIs in the path ij and ij+1, the

property dj ∈ Sj+1 holds.
For instance, a path from cc2 to sc2 can be implemented by

the three PIs:

i1 = (cc2, gc3, NULL, 〈0, 0, 0〉,∅,∅)

i2 = (gc3, gc2, IPsec, 〈3, 3, 3〉, 〈cc1, cc2, cc3〉,∅)

i3 = (gc2, sc2, NULL, 〈0, 0, 0〉,∅,∅)

Since P e1,en is a set, we will use the notation |P e1,e2 | to
indicate its cardinality, that is the number of policy imple-
mentations that compose it.
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VI. ANOMALY ANALYSIS AND RESOLUTION

Having formalized the definition of a policy implementa-
tion, we can now express the logic formulas used to detect
the various anomalies.

In Section IV, we introduced an anomaly classification
based on five macro-categories (see Fig. 2), which emphasizes
the side effects of an anomaly. In the following paragraphs,
however we will use a more technical oriented classification
(see Fig. 5), better suited for a more formal discussion. In fact,
such classification highlights the possible levels of interactions
among PIs and, hence, at which level is possible to generate
an anomaly. We have distinguished three levels of anomalies:
1) the PI level anomalies that occur within a single PI; 2) the
node level anomalies, which come up between two distinct
PIs laying on the same node; 3) the network level anomalies
arise between distinct PIs that belong to different nodes.

Internal loop

Out of place

Non-enforceability

Inadequacy

Shadowing

Redundancy

Exception

Correlation

Inclusion

Affinity

Contradiction

Cycle

Monitorability

Alternative path

Superfluous

Filtered channel

L2

Skewed channel

Asymmetric channel

Irrelevant

Unsuitable requirements

Intra-technology

Inter-technology

Path

Channel

PI level

Node level

Network level

Anomalies

Fig. 5: Information-centric taxonomy.

A. PI level anomalies

We can distinguish two families of PI level anomalies:
irrelevant and unsuitable requirement anomalies. A PI that
generates an irrelevant anomaly (internal loop and out of
place) is meaningless for the network semantics, so that their
presence does not change how a network exchanges the data.
The unsuitable requirement anomalies (non-enforceability and
inadequacy) instead break some security prerequisite and they
can lead to very severe problems.

1) Internal loop – Ail(i1): There is an internal loop
anomaly when the source and destination end-points are on
the same node, thus creating a data loop. These anomalies
can be inferred using the formula:

s1 6⊥ d1

The proposed resolution method is to simply delete i1.
2) Out of place –Aop(i1): There is an out of place anomaly

when a PI is deployed on a wrong network node. That means
that the source is disjoint with the node where the PI is
deployed. To detect these anomalies we use the functionN (i1)

that return the node where the PI is actually deployed. The
formula is then:

N (i1) ⊥ s1

The simplest resolution is to delete i1. However, a more
suitable approach can be to redeploy the PI on the correct
node or to appropriately modify its source.

3) Non-enforceability – Ane(i1): A PI i1 is non-
enforceable when its technology is not supported by neither
the source nor the destination or when its security coefficients
are ‘too secure’, and hence cannot be enforced.

We will make use of two functions: T (e), which returns the
set of technologies supported by the node e, and Cmax(i1),
wchich returns the set of maximum enforceable coefficients
by the PI i1.

These anomalies can be identified with the formula:

C1 � Cmax(i1) ∨ t1 6∈ T (s1) ∨ t1 6∈ T (d1)

To resolve these anomalies an administrator can choose
to upgrade the security libraries/services on the PI
source/destination to support the desired technologies or, al-
ternatively, he might modify the PI by changing the protocol
or lowering the security coefficients.

4) Inadequacy – Ain(i1): We have an inadequacy anomaly
when the security coefficients of a policy implementation
establish a channel with a security that is lower than an
acceptable threshold. We can use a function Cmin(i1) that
returns the minimum acceptable coefficients for the channel
defined by the PI i1. This function should be defined a-priori
by the administrators according to some sort of metric or best
practice [8], [9], [10] For example a network administrator
could define a function such as:

Cmin(i1) =

{
〈1, 1, 1〉 if i1 is crossing the Internet
〈0, 0, 0〉 otherwise

We can detect these anomalies with the rule:

C1 ≺ Cmin(i1)

To fix these anomalies the security requirements of the policy
implementation must be increased so that the property C1 �
Cmin(i1) holds.

B. Node level anomalies

A node level anomaly occurs between two distinct policy
implementations laying on the same node.

If the two PIs have the same technology then we have
an intra-technology anomaly (shadowing, exception, redun-
dancy and correlation anomalies), otherwise we have an
inter-technology anomaly (inclusion, affinity and contradiction
anomalies). The intra-technology anomaly category has been
heavily inspired by the work of Al-shaer et al. [6].

For detecting these anomalies we assume that the two PIs
have the same crossed gateways, that is G1 = G2. In addition,
we will also make use of the function π(i) ∈ N that returns
the priority of a PI in a PI set (the lower the number the higher
the priority).
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1) Shadowing – Ash(i1, i2): A PI i2 is shadowed when
there is another policy implementation i1 with a higher priority
that matches all the traffic of the first one (s1 � s2 ∧ d1 �
d2 ∧ S1 ⊇ S2) and has disjoint security coefficients. We can
detect these anomalies using the formula:

π(i1) < π(i2) ∧ t1 = t2 ∧ s1 � s2 ∧ d1 � d2∧
S1 ⊇ S2 ∧ C1 ⊥ C2 ∧G1 = G2

In order to resolve these kind of anomalies, the two PIs should
be replaced by another PI i3 that is a sort of upper bound of
the previous ones. In particular, i3 will have the following
fields:
• s3 is the least upper bound of s1 and s2 such that s3 � s1

and s3 � s2 hold;
• d3 is the least upper bound of d1 and d2 such that d3 � d1

and d3 � d2 hold;
• C3 = {c3,i}i can be computed as c3,i = max(c1,i, c2,i)

where C1 = {c1,i}i and C2 = {c2,i}i;
• t3 = t1 = t2, G3 = G1 = G2 and S3 = S1 ∪ S2.
To maintain the semantics of the system, the new PI i3

should be inserted with the same priority of i1 (that is π(i1)).
2) Redundancy – Are(i1, i2): A PI i2 is redundant when

there is another policy implementation i1 with a higher priority
that matches all the traffic of the first one and has equal or
dominant security coefficients. The following formula can be
used to infer these problems:

t1 = t2 ∧ s1 � s2 ∧ d1 � d2∧
S1 ⊇ S2 ∧ C1 � C2 ∧G1 = G2

The proposed resolution is simply to delete i2, because it does
not add new semantics to the network.

3) Exception – Aex(i1, i2): A PI i2 is an exception of
another policy implementation i1 with a higher priority if they
have disjoint security coefficients and i2 is a superset match
of i1 (s1 ≺ s2 ∧ d1 ≺ d2 ∧ S1 ⊃ S2) . The relative detection
formula is:

π(i1) ≺ π(i2) ∧ t1 = t2 ∧ s1 ≺ s2 ∧ d1 ≺ d2∧
S1 ⊃ S2 ∧ C1 ⊥ C2 ∧G1 = G2

Exceptions are very similar to the shadowing anomalies,
and in fact they share the same resolution technique.

4) Correlation – Aco(i1, i2): A PI i2 is correlated with
another policy implementation i1 if they have disjoint security
coefficients, i1 matches some traffic for i2 and vice versa. In
other words, the source and destination of i1 and i2 belong
to the same node and there is no shadowing, redundancy or
exception between the policy implementations. We can detect
these anomalies via the formula:

s1 6⊥ s2 ∧ d1 6⊥ d2 ∧ t1 = t2 ∧G1 = G2∧
¬Ash(i1, i2) ∧ ¬Aex(i1, i2) ∧ ¬Are(i1, i2)

To resolve these anomalies, the two PIs i1 and i2 can be
replaced with a new PI i3 with the same fields as described
in the shadowing anomaly resolution technique. However, the
newly created policy implementation will be inserted with a
priority π(i3) = min(π(i1), π(i2)).

5) Inclusion – Ain(i1, i2): The PI i1 includes (or dom-
inates) the policy implementation i2 when all fields of i1
dominate or are equal to their respective i2 fields, but one
that is strictly dominant. We can detect these anomalies with
the formula:

s1 � s2 ∧ d1 � d2 ∧ t1 � t2 ∧ C1 � C2∧
S1 ⊇ S2 ∧G1 = G2 ∧ i1 6= i2

The simplest way to resolve these anomalies is to delete
i2 (the ‘innermost’ PI). However, an administrator can also
choose to keep both the policy implementations, following a
security in depth approach.

6) Affinity – Aaf (i1, i2): A PI i1 is affine with another
policy implementation i2 when they share some fields, but
none of the PIs includes the other. We can detect these
anomalies with the formula:

(s1 6⊥ s2 ∧ d1 6⊥ d2 ∧ t1 6⊥ t2) ∧ ¬Ain(i1, i2) ∧ ¬Ainc(i2, i1)

To resolve this type of anomaly, the two PIs should be
replaced with a new PI i3 that is a sort of upper bound of
the previous ones:
• s3 is the least upper bound of s1 and s2 such that s3 � s1

and s3 � s2 hold;
• d3 is the least upper bound of d1 and d2 such that d3 � d1

and d3 � d2 hold;
• t3 is the least upper bound of t1 and t2 such that t3 � t1

and t3 � t2 hold;
• C3 = {c3,i}i can be computed as c3,i = max(c1,i, c2,i)

where C1 = {c1,i}i and C2 = {c2,i}i;
• S3 = S1 ∪ S2 and G3 = G1 = G2 .
7) Contradiction – Aco(i1, i2): Two PIs i1 and i2 are in

a contradiction if their sources/destinations lay on the same
node but their technologies are disjoint (that is one PI is using
the NULL technology and the other one a security protocol).
The formula for detecting these anomalies is:

s1 6⊥ s2 ∧ d1 6⊥ d2 ∧ t1 ⊥ t2

Due to the high ambiguity of the situation (we cannot distin-
guish between a ‘protect’ and a ‘do not protect’ requirement),
the resolution is the removal of one policy implementation,
for instance, the one using the NULL technology.

C. Network level anomaly

The network level anomalies occur between distinct PIs that
belong to different nodes. We can split these anomalies in two
main categories: path (cyclic path, monitorability and alter-
native path anomalies), and channel anomalies (superfluous,
filtered channel, L2, skewed channel and asymmetric channel
anomalies).

1) Superfluous – Asu(i1): A PI i1 is superfluous if it
models a tunnel (S1 6= ∅) and all the policy implementations
transported in this tunnel (∀ ik|sk ∈ S1 ∧ G∗k ⊃ G∗1) have
a security level greater than i1. This anomalous PIs can be
detected using the formula:

S1 6= ∅ ∧ {∀ ik|(sk ∈ S1 ∧G∗k ⊃ G∗1)⇒ (Ck � C1)} 6= ∅
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Since all data transported in the tunnel are better protected
than the tunnel itself, the obvious resolution is to delete i1
(since it is redundant). However, as in the inclusion anomaly,
an administrator could choose to keep the PI to increase the
security of the network.

2) Skewed channel – Ask(i1, i2): Two PIs i1 and i2 that
define two tunnels are skewed if their respective channels
overlap. This type of anomalies are tricky because in a portion
of the network the traffic will be send without any form of
encryption (see Fig. 3). We can detect these anomalies with
the formula:

s1 ∈ S2 ∧ (|G∗1 ∩G∗2|) > 2∧ (G∗2 \G∗1 6= 0)∧ cc1 > 0∧ cc2 > 0

In order to resolve this kind of anomalies, it is needed to
split the two PIs in three (or more) not overlapping policy
implementations.

3) Filtered channel – Afi(i1): A PI i1 is filtered when
exists at least one node e in its path with a filtering rule that
discards all its traffic. Given a function Fe(i1), which returns
true if the traffic related to i1 is dropped and false otherwise,
we can formally model this anomaly with:

∃e : e ∈ G1 ∧ Fe(i1) = true

In practice, the output of the function Fe(i1) can be
populated either by means of a network reachability analysis
[11], [12] or by using some firewall policy queries [13].

This anomaly is particularly severe since it completely
hinders the connectivity between a number of network nodes.
To remove the problem, the administrator can choose to delete
the PI i1 or modify accordingly the filtering rule.

4) L2- AL2(i1): We have a L2 anomaly when a PI that
makes use of a data-link layer technology crosses an area
using a different layer 2 protocol. For instance, we have a
L2 anomaly when a WPA2 policy implementation crosses
some Ethernet nodes, so that we cannot use WPA2 for the
whole path. We can express this anomaly by making use of a
function T (2)(e) that returns the set of technologies at layer
two supported by the node e. We can then write the formula:

∃e : e ∈ G∗1 ∧ t1 6∈ T (2)(e)

These anomalies are quite hard to resolve since they require
a complete edit of the PI, by choosing a technology at a layer
strictly greater than 2.

5) Asymmetric channel – Aas(i1): A PI i1 is asymmetric
if does not exist another PI with: 1) the source and destination
swapped (s1 6⊥ d2 ∧ d1 6⊥ s2); 2) the same technology and
security coefficients; 3) the same list of crossed gateways, but
in reverse order. In other words, these problems arise when we
have a bidirectional communication with a channel weaker
than the other. We can identify these anomalies using the
formula:

@i2 : s1 6⊥ d2 ∧ d1 6⊥ s2 ∧ t1 = t2 ∧ C1 = C2 ∧G1 = G2

The simplest way to resolve these anomalies is to make sure
that both the two PIs have the same security coefficients.

6) Cyclic path – Acy(P
e1,e2): There is a cyclic path

anomaly between two network nodes e1 and e2 if there is
at least one cycle in the path connecting them. In literature
several algorithms have been proposed to perform the cycle
detection in graphs in a very efficient way [14].

The only way to resolve this kind of anomalies is to modify
the PIs to remove the cycles.

7) Monitorability – Amo(P
e1,e2): A path P e1,e2 is mon-

itorable when there is not an end-to-end channel between
e1 and e2. That means that, even if the connections are
protected by encryption, there is at least one node where
an encrypt/decrypt operation is performed, thus potentially
breaking the confidentiality of the communication. These
anomalies can be detected by using the formula:

@P e1,e2 : (|P e1,e2 | = 1 ∧ ij ∈ P e1,e2 : ccj > 0)

If the network is not trusted, the obvious way to remove this
anomaly is to edit the PIs such that there are only end-to-end
channels between e1 and e2 .

8) Alternative path – Aal(P
e1,e2
1 , P e1,e2

2 ): There is an
alternative path between two nodes e1 and e2 if there are
two o more different paths that can be taken from the first
node to the last one. This anomalies can be easily found by
making use of the formula:

∃P e1,e2
j , P e1,e2

k , j 6= k

To remove this redundancy the administrators have to
choose the ‘best’ path for the communication and delete
the other ones. The choice can be made by using different
strategies, such as picking the shortest path or the path with
the PIs with the highest security coefficients.

VII. GRAPH-BASED REPRESENTATION OF THE ANOMALIES

Aiming for a model that also has practical relevance, we
investigated the possibility of a user friendly representation of
our anomalies. It is evident that logical formulas are not easily
usable by administrators. In Section V we already sketched our
hierarchical view of a network node. By means of this view,
we can depict secure communications by connecting network
nodes to form a multi-graph. The obvious advantage of such
representation is that it allows a network administrator to
visualize the communications at a glance, intuitively identify
the anomalies, and immediately see the consequences and the
proper reactions.

For example, Fig. 6 shows an affinity anomaly between two
PIs. The first policy implementation (solid line) enforces IPsec
in transport mode and requires only confidentiality, while the
second one (dashed line) uses TLS and enforces both payload
and header integrity. The graph clearly shows that the two
PIs are correlated as there are two “parallel” arrows. Our
tool also explains these PIs are affine since they share some
common aspects, but none of them includes the other one. An
administrastor may understand that he can alternatively use
(1) only the IPsec channel, if he adds also payload and header
integrity, (2) only the TLS channel, if ha adds confidentiality,
or keep both (provided he adds at least payload integrity to the
IPsec channel that is independently highlighted as Inadequacy
anomaly).
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Fig. 6: Graphical representation of an affinity anomaly.
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Fig. 7: Graphical representation of a superfluous anomaly.

Another example is shown in Fig. 7, where a superfluous
anomaly is depicted. We recall that a channel is superfluous
when there is another tunnel that covers at least the same
traffic but protects the communication with a superior security
level. In this case the IPsec tunnel between gc3 and gc2 is
redundant, so an administrator immediately sees that it can be
safely removed.

All the anomalies but the out of place anomaly type have
a corresponding graphical representation. Indeed, graphical
anomaly representations can be built by including the network
node trees corresponding to the communication end-points
(see Fig. 4), that is, the source and the destination of the PI.
Then, on one hand, policy implementations that enforce end-
to-end channels are represented as a single directed edges that
connect together two communication vertices, i.e. the proper
communication layer nodes. For instance, in Fig. 6 the edge
connects the layer 3 nodes as the technology is IPsec. To
increase the expressiveness of our representation, each edge
is also labelled with both the technology and the security
coefficients required by the PI.

On the other hand, to represent policy implementations that
enforce site-to-site and remote-access communications we add
all the the network node trees corresponding to the crossed
gateways and a set of edges that connect all the communication
parties. For instance, in case of a tunnel (see Fig. 7), we
introduce five edges: one undirected edge between the source
node and the first gateway, one undirected between the first and
the second gateway, one directed between the second gateway
and the destination node, and two undirected edges to connect
the communication interfaces of the gateways. Graphically,
the resulting effect is a single arrow that connects source to
destination. To tell them from end-to-end communications, we

use dashed lines for site-to-site communications. In this case,
the label is added to the only protected communication, that
is, the one between the gateways.

As anticipated, the only anomaly that we did not represent
graphically is the out of place anomaly type. The increase
of complexity to the graphical representation (i.e. associate
addresses, possibly ports and other parameters to the nodes)
to visualize this anomaly type was not worth the increase of
practical usefulness. Indeed, out of place anomalies are easily
understood.

VIII. MODEL VALIDATION

In this section, we present an evaluation of the suitability
of the our anomaly analysis model.

A. Empirical assessment

In order to evaluate the practical importance of our work,
we conducted an empirical assessment. We tried to answer
two simple yet interesting research questions:
RQ1. Are anomalies presented in this paper actually intro-

duced by the administrators when configuring the CPPs?
RQ2. Does the number of anomalies decrease when the ad-

ministrator expertise grows?
We mainly focused on the new kinds of anomalies presented

for the first time in this paper. For this reason we did not report
statistics on anomalies already present in literature, namely the
shadowing, redundancy, exception, correlation and the skewed
channel (overlapping sessions) and out of place (irrelevances)
whose importance was already proved in other original works
[6], [15], [16]. Moreover, we designed the experiment to be
completed by expert administrators in one hour, therefore we
avoided to provide data link information and kept the size
of the network reasonably low. Therefore it was not possible
to generate L2 anomalies, asymmetric channel, cycle and
alternative path.

If our first research question (“the anomalies listed in this
paper arise when enforcing the CPPs”) were confirmed we
could deduce that performing the detection can help improving
the policy enforcement correctness in real world networks.

In order to answer the research questions, we conducted
an experiment by recruiting a set of 30 administrators. We
split them into three categories according to their expertise
level (high, medium and low expertise), each one containing
10 people. In the test, we have considered as high-level expert
administrators who have more than two years of experience in
the security field, as mid level experts the administrators with
more than two years of practice in the (non-security) network
field and as low level experts the remaining ones.

We asked them to enforce five CPPs (e.g. “all the ad-
ministrators must securely reach the accounting service”) by
implementing them as a set of policy implementations. The
landscape was a small network (composed of 5 subnets, 6
servers, 9 clients, 10 gateways and 76 PI sets). The network
description and the CPPs were available online to the par-
ticipants both as a web page and as a pdf document to be
accessed offline. The participants were asked to write all the
PIs where all the their fields where constrained to valid values
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Experience Insecure communications Unfeasible communications Potential errors Suboptimal implementations At least one type

Low 70.00% 60.00% 60.00% 70.00% 100.00%
Medium 60.00% 30.00% 50.00% 40.00% 90.00%
High 30.00% 20.00% 20.00% 70.00% 90.00%

Average 53.33% 36.67% 43.33% 60% 93.33%

TABLE I: Percentage of administrators that have done at least one anomaly in a macro-category.

Experience Internal loop Non-enforceability Inadequacy Inclusion Affinity Monitorability Superfluous Filtered Contradiction

Low 20.00% 30.00% 40.00% 30.00% 50.00% 30.00% 30.00% 30.00% 30.00%
Medium 10.00% 20.00% 40.00% 20.00% 40.00% 20.00% 30.00% 10.00% 10.00%
High 10.00% 10.00% 10.00% 20.00% 20.00% 20.00% 50.00% 10.00% 0.00%

Average 13.33% 20.00% 30.00% 23.33% 36.67% 33.33% 30.00% 16.33% 13.33%

TABLE II: Percentage of administrators that have done at least one anomaly.

Experience Internal loop Non-enforceability Inadequacy Inclusion Affinity Monitorability Superfluous Filtered Contradiction

Low 1.49% 4.48% 10.95% 2.99% 6.97% 2.99% 7.46% 17.91% 8.96%
Medium 1.50% 3.76% 13.53% 4.51% 5.26% 3.01% 3.76% 9.02% 4.51%
High 1.61% 0.81% 4.03% 3.23% 2.24% 8.87% 8.06% 3.23% 0.00%

Average 1.53% 3.28% 9.83% 3.49% 5.24% 6.55% 4.59% 11.35% 5.24%

TABLE III: Percentages of anomalies introduced by the administrators.

Experience Insecure communications Unfeasible communications Potential errors Suboptimal implementations Total

Low 18.41% 22.39% 15.92% 7.46% 64.18%
Medium 16.54% 12.78% 9.77% 9.77% 48.87%
High 12.90% 4.03% 2.42% 12.90% 32.26%

Average 16.38% 14.63% 10.48% 9.61% 51.09%

TABLE IV: Percentages of anomalies introduced by the administrators grouped in macro-categories.

(e.g. correct node and protocol names) to avoid uninteresting
errors. We did not impose neither a time limit nor a maximum
number of PIs.

The analysis of experiments data gave us very interesting
information. First of all, 93% of administrators introduced at
least one anomaly, regardless of the expertise, as shown in
Table I. In addition, all the new anomalies have been intro-
duced by at least one administrator (see Table II). Interestingly
enough, all the anomaly types but contradictions were also
introduced by expert administrators. This result successfully
answered positively our first research question, that is the
anomalies presented in this paper can appear in real world
scenario, thus it is useful to look for them.

The second research question (the more the expertise of
administrators the less the anomalies) has been also confirmed
for all the anomaly macro-categories except one, the subop-
timal implementations (see Table IV). Obviously having a
better understanding of a network and its different security
controls, reduces the chance of introducing anomalies. This is
particularly evident for the filtered anomalies, as the admin-
istrators also have to consider the interactions with firewalls
to avoid them, but it is also valid for the non-enforceability,
inadequacy, affinity, and contradiction anomalies (see Ta-
ble III). On the other hand, the suboptimal implementations
tend to increase because the expert administrators add more
superfluous anomalies then inexpert ones. This is due because
highly experienced administrators tend to add several level of
protections in the communications (defense in depth), although
this was not expressly required in the exercise. Moreover, the

expert administrators’ PIs also contains several monitorability
anomalies, since they tend to make an extensive use of
tunnels while the less experienced ones mainly use end-to-end
channels. In short, they tend to break secure communications
to improve the overall network performances. In this sample
network the monitorability anomalies are not a particular
serious issue (as we had homogeneous security levels in all
networks), however, it is certainly better to double check
them. Finally, there are a number of internal loop anomalies,
more likely due to mere distraction errors, that are constant
regardless of the expertise level.

B. Complexity analysis
We will now derive some complexity formulas that prove

the theoretical performances of our model. We will start
with a simple observation. Our approach can be split in two
consecutive phases. The first one is a pre-computation phase,
where the tree representation of the network and its paths are
obtained. The second one is an analysis phase that consists of
the real anomaly detection pass.

Let’s suppose that we have a network consisting of E entities
(IPs, ports, addresses, . . . ), I policy implementations and C
connections between the network entities created by the PIs
(obviously C ≥ I).

We will start by taking a look at the pre-computation phase.
To create the tree representation of the network nodes, we need
to check every single entity, so that this process has an exact
complexity of E . Finding all the simple paths3 in an acyclic

3A simple path is a path with no duplicate vertexes.
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Fig. 8: Performance tests with a fixed number of PIs.

100 200 300 400 500

0

20

40

60

80

PI count

Ti
m

e
[s

]

(a) With 100 entities.

100 200 300 400 500

0

20

40

60

80

PI count

Ti
m

e
[s

]

(b) With 250 entities.

100 200 300 400 500

0

50

100

PI count

Ti
m

e
[s

]

(c) With 500 entities.

Fig. 9: Performance tests with a fixed number of network entities.

graph is a NEXPTIME problem with a maximum complexity
of O(eE). Note, however, that the real networks are scarcely
connected and that multiple paths between two different nodes
are quite rare, making these calculations feasible also in large
IT infrastructures. In addition, an administrator can choose to
limit the number of paths to check to some fixed value P ,
typically P ≪ eE . Hence, the total complexity of the pre-
computation phase is E + P .

Regarding the analysis phase, we have to take into account
the different characteristics of the anomaly detection formulas.
In particular, we have that:

• the internal loop, out of place, non-enforceability, in-
adequacy, filtered channel, L2 and asymmetric channel
anomalies algorithms work on a single PI at a time, so
that they have a complexity of I;

• the shadowing, redundancy, exception and inclusion
anomalies algorithms need an ordered pair of PIs, thus
achieving a complexity of I(I−1). Also the superfluous
anomaly has a quadratic complexity since it needs to test
every PI against all the other ones;

• the correlation, affinity and skewed channel anomalies
algorithms work on unordered pairs of PIs, making them
with a complexity of I(I − 1)/2;

• the monitorability and alternative path anomalies algo-
rithms work on every path, hence they have a complexity
of P;

• the cyclic path anomaly algorithm can be efficiently
performed using a proper cycle detection algorithm such
as [14], that has a complexity of O(E + C). Note that its

complexity is not necessarily P since a graph with some
loops has an infinite number of paths.

Summarizing, the total complexity of the analysis phase is:

I + I(I − 1) + P +O(E + C) ≈ I2 + P +O(E + C)

C. Performance analysis

We implemented our anomaly detection model and tested it
in several scenarios using a number of synthetically generated
networks in order to assess its running time.

Our tool was developed using Java 1.8 and exploiting the
natural graph-based representation of ontologies offered by
OWL API 3.4.10 and the reasoner Pellet 2.3.1. We performed
all our tests on an Intel i7 @ 2.4 GHz with 16 GiB RAM
under Windows 7.

Each test was performed on several ad-hoc scenarios con-
sisting of an automatically generated network with a paramet-
ric structure where we can specify: 1) the number of network
entities; 2) the number of policy implementations; 3) the
percentage of conflicting PIs. We choose to fix the number
of conflicting PIs to about 50% since, from our empirical
analysis, on average, an administrator writes only about half of
the policy implementations without any kind of conflict (see
Table IV).

We have performed two main kind of tests. In the first one
we kept fixed the number of network entities and increased
the number of PIs, while in the second one we did the reverse
(kept fixed the number of PIs and changed the entities count).
Fig. 8 shows the test results when fixing the number of PIs
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respectively to 100, 250 and 500, while Fig. 9 shows the
graphs when the network entities count is 100, 250 and 500.
For each test we kept track of three times: the pre-computation
phase (the dotted lines), the analysis phase (the dashed lines)
and the total times (the solid lines).

Our tool proved to be very scalable, achieving a total time
of less than two minutes in the worst scenario (500 PIs and
500 network entities). In addition, the results are aligned with
the complexity analysis discuessed in Section VIII-B. For
instance, by increasing the number of network entities (Fig. 8),
we may observe that the times tend to grow up, while by fixing
the number of entities (Fig. 9) the pre-computation phase time
is completely unaffected.

IX. RELATED WORKS

Anomaly analysis, detection and resolution in policy-based
systems and security controls are hot topics in the modern
research. The current literature proves this by having several
notable works, which we will briefly discuss in the following
paragraphs.

A. Communication protection policies

The current literature contains several works about the
anomaly detection between communication protection poli-
cies. Apparently the research in this area is solely focused
on the IPsec technology.

An approach introduced by Zao in [17] is to combine
conditions that belong to different IPsec fields. This was the
basis used also in [18], where Fu et al. described a number of
conflicts between IPsec tunnels, through a simulation process
that reports any violation of the security requirements. In their
analysis, the policy anomalies are identified by verifying the
IPsec configurations against the desired policies written in a
natural language. In practice, there is an anomaly when the
policy implementations do not satisfy the requirements of the
desired policies. In addition, Fu et al. proposed a resolution
process that tries to find alternative configurations in order to
satisfy the desired policy.

Al-Shaer et al. analyzed the effects of the IPsec rules on the
protection of networks [6], by proposing a number of ad-hoc
algorithms and formulas to detect these problems. Al-Shaer
formalized the classification scheme of [18] and proposed a
model based on OBDD (Ordered Binary Decision Diagrams)
that not only incorporates the encryption capabilities of IPsec,
but also its packet filter capabilities. He also identified two
new IPsec problems (channel-overlapping and multi-transform
anomalies). The first one occurs when multiple IPsec sessions
are established and the second session redirect the traffic of
the first one (similar to the case depicted in Fig. 3). On
the other hand, the multi-transform anomalies occur when a
data protection is applied to an already encapsulated IPsec
traffic and the second protection is weaker than the first
one. The same authors also described a classification system
for conflicts between filtering and communication protection
policies in [15].

Niksefat and Sabaei, in [19], presented an improved version
of Al-Shaer’s solution proposed in [6]. The two main improve-
ments over the Al-Shaer’s work are a new, faster detection
algorithm and the possibility to resolve the detected anomalies.

Another interesting paper is [20], due to Li et al., where the
authors classified the IPsec rules in two classes: access control
lists (ACL) and encryption lists (EL).

B. Filtering policies

Network configuration/policy anomaly detection is not only
restricted to communication protection technologies. In liter-
ature a quite rich collection of papers about filtering policy
analysis is also available. Although these works are not
directly related to the approach presented in this paper, they
can be very useful as a general background on network
anomaly analysis. In the following paragraphs we present a
brief selection of several relevant works in this area.

One of the most influential works in this area is due
to Al-Shaer et al., which addresses the analysis of filtering
configurations in [21] via a set of FOL formulas. The authors
analyzed both the local anomalies arising in a single firewall
and the global ones taking into account several distributed
filtering devices.

Liu et al., in [22], focused on detecting and removing
redundant filtering rules. The authors categorized these rules
into upward redundant rules and downward redundant rules.
The first ones are rules that are never matched, whether the
downward redundant ones are rules that are matched, but
enforce the same action as some other rules with a lower
priority. The presented model is based on a data-structure
named FDD (Firewall Decision Diagram).

Basile et al. describe a geometric representation, detection
and resolution of filtering configurations, based on the intersec-
tion of hyper-rectangles in [23]. The authors extended the work
performed by Al-Shaer by introducing the anomalies between
more than two rules and by showing how to transform a policy
representation in another form that preserves its semantic.
Similarly, Hu et al. in [24] suggested to split the classic
five-tuple decision space of packet filtering rules into disjoint
hyper-rectangles, where the conflicts are resolved using a
combination of automatic strategies.

A thoroughly different approach for detecting conflicts
between a set of filtering configurations is proposed again by
Hu et al. in[25] by making used of an ontology-based anomaly
management framework. Similarly, Bandara et al. proposed the
use of logic reasoning, obtaining excellent performances [26].

Alfaro et al. presented a collection of algorithms to remove
a series of anomalies between packet filter configurations and
NIDS in distributed systems [16]. These techniques were more
recently implemented in the MIRAGE tool[27].

X. CONCLUSIONS AND FUTURE WORK

In this paper we proposed a list of nineteen anomalies
(grouped in two taxonomies) that can arise during the imple-
mentation of communication protection policies and a formal
model based on FOL formulas that is able to detect them. Our
approach can be used to find incompatibilities, redundancies
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and severe errors between policy implementations that use
security technologies working at different ISO/OSI layers and
with different security properties. Most of the anomalies can
be represented graphically with a simple yet natural graph
representation, thus providing the administrators with a more
intuitive way to visually identify the anomalies.

We implemented our model in Java by making an extensive
use of ontological techniques, and proved on several network
scenarios that it is scalable and performs well.

For the future, we plan to extend the expressivity of our
model by adding the supports for new type of network
devices such as intrusion detection systems (IDS) and parental
control nodes. Furthermore, we are planning to perform other
empirical assessments in order to evaluate if our tool can help
the administrators to reduce the number of anomalies in real-
world scenarios.
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APPENDIX

Table V lists all the mathematical notations and symbols
used in this paper.

Network entities Technologies Security coefficients

e1 = e2 t1 = t2 C1 = C2 Equivalence
e1 � e2 t1 � t2 C1 � C2 Dominance
e1 ∼ e2 t1 ∼ t2 Kinship
e1 ⊥ e2 t1 ⊥ t2 C1 ⊥ C2 Disjointness

Crossed gateways

G∗ Crossed gateways with end-points
G Crossed gateways in reverse order

Paths

Pa,b A path from a to b
Auxiliary functions

N (i) Node where the PI i is deployed
T (e) Technologies supported by node e
Cmax(i) Maximum coefficients supported by the PI i
Cmin(i) Minimum coefficients acceptable for the PI i
π(i) Priority of the PI i
Fe(i) Filtering of node e for the PI i
T (2)
e (i) Data-link incompatibility for the node e and the PI i

TABLE V: Mathematical notations.


