
Are Fit Tables Really Talking?
A Series of Experiments to Understand whether Fit Tables

are Useful during Evolution Tasks

Filippo Ricca1, Massimiliano Di Penta2, Marco Torchiano3

Paolo Tonella4, Mariano Ceccato4, Corrado Aaron Visaggio2

1Unità CINI at DISI, Genova, Italy
2RCOST - University of Sannio, Benevento, Italy

3Politecnico di Torino, Italy
4Fondazione Bruno Kessler–IRST, Trento, Italy

filippo.ricca@disi.unige.it, dipenta@unisannio.it, torchiano@polito.it,tonella@itc.it, ceccato@itc.it, visaggio@unisannio.it

ABSTRACT
Test-driven software development tackles the problem of opera-
tionally defining the features to be implemented by means of test
cases. This approach was recently ported to the early development
phase, when requirements are gathered and clarified. Among the
existing proposals, Fit (Framework for Integrated Testing) supports
the precise specification of requirements by means of so called Fit
tables, which express relevant usage scenarios in a tabularformat,
easily understood also by the customer. Fit tables can be turned
into executable test cases through the creation of pieces ofglue
code, called fixtures.

In this paper, we test the claimed benefits of Fit through a series of
three controlled experiments in which Fit tables and related fixtures
are used to clarify a set of change requirements, in a software evolu-
tion scenario. Results indicate improved correctness achieved with
no significant impact on time, however benefits of Fit vary in asub-
stantial way depending on the developers’ experience. Preliminary
results on the usage of Fit in combination with pair programming
revealed another relevant source of variation.

Categories and Subject Descriptors
D.2.1 [Requirements/Specifications]: Methodologies, Tools

General Terms
Experimentation, Measurement

Keywords
Empirical studies, Acceptance test, Software Maintenance

1. INTRODUCTION
When specifying requirements and change requests in natural lan-
guage, analysts have to avoid several “sins” [8] that may bring

about interpretation problems between analysts and developers. So-
me of them arenoise, i.e., information not relevant to the problem
or a repetition in the requirements,silence, when important infor-
mation is missing, orover-specification, when portions of the so-
lution are mentioned in the requirements. A substantial proportion
of code defects, as high as 85%, originates at the requirement elic-
itation phase [17], both for initial requirements and for change re-
quests, during software evolution. The root cause for such defects
can be associated with ambiguous, incomplete, inconsistent, silent
(unexpressed), unusable, over-specific or verbose requirements [8].
Test-driven development advocates a central role for testing and test
cases, used to capture the features to be implemented in a form that
can be checked automatically through execution. Unit test cases
show the development progress for single modules. Similarly, ex-
ecutable acceptance test cases have been proposed to measure and
describe precisely the level of progress in the implementation of
the initial requirements or change requests. According to the agile
methodologies [7], acceptance test cases are deemed more precise
and accurate sources of information about the customer’s require-
ments than their description in natural language. Acceptance test
cases are “talking” representation of the requirements, which can
be consulted whenever ambiguities or misinterpretations may arise.

Among the technologies for supporting automated acceptance test-
ing, Fit (Framework for Integrated Test) [9] is one of the most pop-
ular and widely used. Fit helps analysts write acceptance tests by
means of simple HTML tables (Fit tables), including input and ex-
pected output for each test scenario. Different kinds of tables are
used for different testing conditions, e.g., testing the output for a
given sequence of values vs. testing the result of a sequenceof
actions. Developers write glue code (calledfixtures) to link the
test cases expressed in the Fit tables with the system under devel-
opment. Once fixtures are available, thetest runnercan execute
them, comparing Fit table data (expected output) with actual val-
ues obtained from the execution.

In this paper, we measure the effects of the adoption of Fit ina se-
ries of three controlled experiments, varying by subjects involved
and working conditions. We evaluated the usage of Fit with sub-
jects having different levels of programming skills and we consid-
ered, in one replication of the experiment, subjects working in pairs
(pair programming). This study has two objectives: on the one
hand, we want to empirically evaluate the effects of Fit on the clar-
ification of requirements, in terms of correctness of the resulting

fit_tests.DiscountStructure
small bags beverage discount total price()

2 Coffee 0 1.24
4 Tea 0 2.48
5 Coffee 1 2.1
5 Tea 0 3.1
7 Coffee 1 3.34
7 Tea 0 4.34

(a) Column Fit table. Each row represents a test case: Fit table col-
umn’s names without parentheses represent input, parentheses indi-
cate output.

fit.ActionFixture
start fit_tests.VerifySupply
enter type of product Coffee
check number of small bags remained 10
enter number of boxes 5
press buying boxes
check number of small bags remined 310
check cash account 845

(b) Action Fit table. The table represents a test case and thecom-
mands simulate the user actions.

Figure 1: Examples of Fit tables.

code. On the other hand, we want to also evaluate the impact ofFit
on the time necessary to complete the task (i.e., the time overhead
involved, if any). Results indicate that benefits are obtained with
no substantial increase of involved task execution time. However,
results vary largely, depending on the level of expertise ofthe in-
volved subjects. Expert subjects can take advantage of Fit much
more than inexperienced ones. Moreover, for subjects working in
pairs, the presence of Fit does not make any significant difference,
in terms of time and of correctness of resulting code. This may in-
dicate a complementary role of pair programming with respect to
the availability of executable acceptance test cases: while a devel-
oper is coding, the other inspects the code to avoid the introduction
of faults.

The paper is organized as follows: Section 2 provides some basic
backrounds on Fit and can be skipped by the reader already familiar
with it. Section 3 gives the details of the experimental design we
used and Section 4 reports the experimental results. We discuss
the results and threats to validity in Section 5. Related works are
discussed in Section 6, and Section 7 concludes the paper.

2. FRAMEWORK FOR INTEGRATED
TEST

Acceptance testing is a validation activity, performed by the cus-
tomer, on the entire system, just before the system is delivered and
aimed at judging if the software is acceptable.

Very often, acceptance testing is performed in a rather informal
fashion, and it is no more than a software demonstration. How-
ever, it would be highly desirable to have acceptance test cases pre-
cisely defined, and to have the acceptance testing phase as more
automated as possible. Clearly, it is impossible to expect that cus-
tomers — in most cases lacking software development expertise —
are able to develop test drivers for test case execution. Customers
should be allowed for specifying acceptance test cases in aneasy
way, without having to deal with source code development, creation
of drivers, scripts, etc.

To this aim, frameworks such asFit [9] have been conceived.Fit
(Framework for Integrated Test) is an open source frameworkused
to express acceptance test cases, with the aim of improving the
communication between analysts and developers. Fit lets customers
and analysts write acceptance tests in the form of tables (Fit tables)
using simple HTML or even spreadsheets.

A Fit table specifies the inputs and expected outputs for the test.
Figure 1-(a) shows an example of Column Fit tables, a particular
kind of table where each row represents a test case. The first three

columns are input values (small bags, beverageanddiscount) and
the last column represents the corresponding expected output value
(total price()). Other thanColumnFit tables, it is possible to spec-
ify Action Fit tables (see Figure 1-(b)), to test user interfaces or
workflows. AnActionFit table represents a test case where the first
column contains commands (start, enter, press, andcheck) used to
simulate the actions that a user would perform on a screen while the
other columns contain the parameters. For example, thepresscom-
mand simulates the button click and the parameter is the nameof
the button. Others types of Fit tables (see [9]) are:RowFit tables,
to validate collection of objects produced as the result of aquery
andTimedActionFit tables to deal with temporal, non functional
requirements.

Fit tables cannot however be directly executed against the system
under test. To this aim developers have to specify drivers, called
Fixtures, to link the test cases to the system under test. A com-
ponent in the framework, theTest Runner, executes the test cases
by relying on theFixtures, and compares Fit table data with actual
values obtained from the System. The test runner highlightsthe
results with colors (green = correct, red = wrong).

3. EXPERIMENT PLANNING
This section describes the definition, design and settings of the
proposed experimentation following the guidelines by Wohlin et
al. [16] and Juristo and Moreno [4]. Table 1 summarizes the main
elements of the experimentation. For replication purposes, the ex-
perimental package has been made available1.

3.1 Experiment definition and context selec-
tion

The goal of the study is to analyze the use of Fit tables with the
purposeof evaluating their usefulness during maintenance tasks.
Thequality focusregards (i) the capability of Fit tables of support-
ing maintenance tasks, and (ii) the additional time that theuse of
Fit table might require. Theperspectiveis both ofResearchers, in-
vestigating on the effectiveness of Fit tables during a maintenance
task, and ofProject managers, evaluating the possibility of adopt-
ing the Fit tables in her/his organization. Thecontextconsists of
two objects– two Java systems – and ofsubjects, i.e., three dif-
ferent classrooms of students (bachelor students, master students,
and PhD students). The objects of the study are two simple Java
programs,LaTazzaandAveCalc.

LaTazzais an application for a hot drinks vending machine. LaTazza
supports sale and supply of small-bags of beverages (Coffee, Tea,

1http://www.rcost.unisannio.it/mdipenta/Fit-Package.zip

Table 1: Overview of the experiment.
Goal Analyze the support given by Fit tables

on maintenance/evolution tasks.
Quality focus Correctness of maintained code

Maintenance time
Context Objects: two Java systems.

Subjects: bachelor, master and PhD students.
Null hypotheses No effect on code correctness.

No effect on maintenance time.
Main factor Availability (or not) of Fit tables
Other factors Subjects’ Experience, System, Lab,

type of task (corrective vs. evolution)
Dependent variables (i) Code correctness assessed by executing

a JUnit functional test suite.
(ii) Time required to perform
the maintenance tasks.

Lemon-tea, etc.) from the Coffee-maker. The application supports
two kinds of clients: visitors or employees. Employees can pur-
chase beverage paying by cash or on credit, visitors only paying by
cash. The secretary can: sell small-bags to clients, buy boxes of
beverages, manage credit and debt of employees, check the inven-
tory and check the cash account. The system consists of 18 Java
classes for a total of 1121 Lines of Code (LOC). Its requirement
document comprises 9 requirements complemented with a total of
16 Fit tables.

AveCalcis a simple “desktop application” that manages an elec-
tronic record book for master students. A student can add a new
exam to the register, remove an existing exam and remove all ex-
ams. An exam has a name, a CFU (a positive number that rep-
resents the University credits) and an (optional) grade. Anexam
without grade is an exam not taken. The grade is between 0 and
30 (inclusive). If the grade is greater than or equal to 18, the
exam result is positive (passed), otherwise it is negative (failed).
It is possible to save the register and to load it. AveCalc computes
some statistics: average of the exams passed, total number of CFU,
number of exams passed, graduation score and whether the student
has passed a number of exams sufficient to defend his/her thesis.
The system consists of 8 Java classes for a total of 1827 LOC. Its
requirement document comprises 10 requirements complemented
with a total of 19 Fit tables.

For both systems, four change requirements (CR) were defined.
Two of them (CR1 and CR2) were related to corrective mainte-
nance (e.g., in AveCalc an exam vote must be checked to be pos-
itive), while the other two (CR3 and CR4) were related to the in-
troduction of new (simple) features, e.g., change of beverage sell-
ing policy for the LaTazza application. As for other requirements,
change requirements were complemented with Fit tables (a total of
14 for AveCalc change requirements and 17 for LaTazza changere-
quirements). All Fit tables considered were of different types, i.e.,
Column, Action and Row Fit tables.

The study was executed twice at the University of Trento, with dif-
ferent subjects, and once at the University of Sannio. The sub-
jects participating in the two replications in Trento are 14Master
students (2nd year M.Sc.) attending the Laboratory of Software
Analysis and Testing (Exp I) and 8 PhD students (Exp II). At the
University of Sannio, the 18 Bachelor students (3rd year) attending
the course of Databases (Exp III) were involved. In this last case
students worked in pairs: one was responsible of writing thecode,

Table 2: Characteristics of the systems under study.
LaTazza

Reqs Fit tables Files LOC
9 18 18 1121

AveCalc
Reqs Fit tables Files LOC
10 19 8 1827

while the other of reading (change) requirement, supervising the
developer’s work and inspecting the code under development.

In each experiment, all the students are from the same class with,
roughly, the same background. Bachelor students had attended pre-
viously Programming and Software Engineering courses, which is
of course true also of Master and PhD students. All subjects,in-
cluding the undergraduate, had a good knowledge on Java program-
ming (they previously developed non-trivial systems as projects for
at least 3 exams), and an average knowledge about software engi-
neering topics (e.g., design, testing, software evolution). At min-
imum, undergraduate students followed one software engineering
course where they learned analysis, design and testing principles.
Subjects have been trained on the understanding and usage ofFit
tables and FitNesse2, i.e., the tool that implements the Fit table ap-
proach used in the experiments.

3.2 Hypotheses formulation and variable
selection

The research questions this experimentation aims at addressing are:

RQ1: Does the presence of Fit tables help programmers to im-
prove the correctness of maintained code after a maintenance/
evolution tasks?

RQ2: Does the presence of Fit tables affect the time in the execu-
tion of maintenance interventions?

Once research questions are formulated, it is possible to turn them
into null hypotheses that can be tested in an experiment:

• H0c The availability of Fit test cases does not significantly
improve the correctness of the maintained source code.

• H0t The availability of Fit test cases does not significantly
affect the time required for the maintenance task.

We can notice thatH0c is one-tailed, since we are interested to
investigate whether Fit improves the correctness, whileH0t is two-
tailed, since we do not know whether the use of Fit requires addi-
tional time or, on the other hand, might reduce the time needed for
the maintenance task.

The treatments for the main factor (availability of test cases) are:

• (+) application requirements and change requirements en-
hanced with fit tables and fixtures, thus enabling test case
execution;

2http://www.fitnesse.org

Table 3: Post-experiment survey questionnaire.
ID Question
Q1 I had enough time to perform the lab tasks (1–5).
Q2 The objectives of the lab were perfectly clear to me (1–5).
Q3 The description of the System was clear (1–5).
Q4 The change requirements were perfectly clear to me (1–5).
Q5 I experienced no difficulty in reading the source code (1–5).
Q6 I experienced no difficulty in correcting the defects and implementing the changes (1–5).
Q7 How many executions (i.e., run of the System) have you done onaverage before having implemented the change?

(A. =1; B. >=2 and<4; C.>=5 and<7; D. >=7 and<10; E.>=10)
Q8 Did you find change fit tables useful in correcting defects? (a–e).
Q9 Did you find running change fit tables tests useful in correcting defects? (a–e).

Q10 Did you find running requirements fit tables tests (regression) useful ? (a–e).
Q11 Did you find running requirements fit tables useful in understanding the application? (a–e).

1 = strongly agree, 2 = agree, 3= not certain, 4 = disagree, 5 = strongly disagree.
a = very much, b = enough, c = undecided, d = little, e = definitely not.

Table 4: Experiment design
(+) = with Fit tables, (-) = without Fit tables.

Group A Group B Group C Group D
Lab 1 LaTazza+ LaTazza- AveCalc- AveCalc+
Lab 2 AveCalc- AveCalc+ LaTazza+ LaTazza-

• (-) requirements and change requirements only expressed in
a textual form.

Textual requirements and change requirements were detailed, so
that subjects having Fit tables available did not receive additional
information not available in the textual requirements as well. The
dependent variables to be measured in the experiment are thecode
correctness and the time required to perform the maintenance task.
The code correctness is assessed by executing a JUnit test suite
and measuring the fraction of test cases passed. Such JUnit test
suites are different from the acceptance test suites and, toavoid
bias, they have been developed independently from the Fit tables
— i.e., by different people — following the category partitioning
black-box strategy [11]. A total of 25 test cases for AveCalcand 24
for LaTazza have been developed. The time needed to perform the
tasks was measured by means of time sheets; students marked start
and stop time for each change requirements implemented. Time is
expressed in minutes. The independent variables considered in this
paper are: the Objects (AveCalc and LaTazza), the Labs (as itwill
be shown in the next section, each experiment was organized in two
laboratories,Lab 1andLab 2), the subjects’ experience (bachelor
students, master students and PhD students), and the type ofmain-
tenance task performed (i.e., corrective for tasks CR1 and CR2,
evolution for tasks CR3 and CR4).

3.3 Experimental design and procedure
We adopted a balanced experiment design intended to fit two Lab
sessions (2-hours each). Subjects were split into four groups, each
one working in Lab 1 on a system with a treatment and working in
Lab 2 on the other system with a different treatment (see Table 4).

Subjects used the Eclipse Java Development Toolkit as develop-

ment environment, with the FitNesse plugin3 used to browse re-
quirements and Fit tables, and to execute test cases. Each subject
received an Eclipse project containing the software sourcecode,
and a FitNesse Wiki with both requirements and change requests.
The experimental package also comprised a short textual descrip-
tion of the application, instructions on how to set-up the environ-
ment, a time sheet where subjects annotated the starting andcom-
pletion time for each change requirement, and a post experiment
questionnaire.

Before the experiment, subjects were trained by means of intro-
ductory lectures, followed by laboratories where they had to un-
derstand and develop Fit tables. For each Lab the subjects had two
hours available to complete the four maintenance tasks (CR1-CR4).

After having configured the environment and read the system de-
scription, for each change requirement, subjects had to:

1. record the starting time on the time sheet;

2. read the change requirement and look at the Fit tables (if
available);

3. implement the change requirement;

4. if Fit tables were available, run test cases of the applica-
tion requirements (for regression testing purposes) and ofthe
change requirement, possibly returning to steps 2 and 3 in
case test case failed; and

5. record the completion time on the time sheet.

During the experiment, teaching assistants and professorswere in
the laboratory to prevent collaboration among subjects, and to check
that subjects properly followed the experimental procedure (e.g.,
they implemented the changes in the given order, they correctly
annotated the time spent). After the experiment, subjects had to
fill a post-experiment survey questionnaire. It aimed at both gain-
ing insights about the students’ behavior during the experiment and
finding justifications for the quantitative results. It includes ques-
tions (see Table 3) about the tasks and systems complexity, the ad-
equacy of the time allowed to complete the tasks and the perceived
3http://www.bandxi.com/fitnesse/

no yes no yes no yes

0.
2

0.
4

0.
6

0.
8

1.
0

Availability of Fit tables

F
ra

ct
io

n
of

 te
st

 c
as

es
 p

as
se

d

Fit tables:
I II IIIExp:

Figure 2: Boxplots for fraction of test cases passed.

usefulness of the provided Fit tables. More precisely, the question-
naire consists of 7 common questions plus 4 questions (Q8-Q11)
answered only by subjects using Fit tables. Answers to Q1-Q6and
to Q8-Q11 are expressed in a Likert scale [10] from 1 (strongly
agree) to 5 (strongly disagree). Answers to Q7 are based on a 5-
levels ordinal scale:{A, B, C, D, E}.

4. EXPERIMENTAL RESULTS
This section reports the results from the three experiments, ana-
lyzing the effect on the dependent variables of the main factors
treatment and of other factors. Finally, results from the analysis
of survey questionnaires is reported. Results of statistical tests are
intended to be significant for a significance level of 95%.

4.1 RQ1: Does the presence of Fit tables help
programmers to improve the correctness
of maintained code after maintenance/ evo-
lution tasks?

Figure 2 and Table 5 show boxplots, descriptive statistics and re-
sults of the unpaired, one-tailed Mann-Whitney test. Results in-
dicate a significant difference between Fit and Text on the overall
data set (All data), for Exp I and forExp II. While for master and
PhD students (Exp I andExp II), Fit tables had a significantly posi-
tive effect, this is not the case for undergraduate students(Exp III).
Although subjects with Fit tables performed better than subjects
without Fit tables, such a difference was not significant inExp III.

The statistical significance alone does not tell anything about the
practical impact of the treatment: it is important to measure the ef-
fect size of the main factor over the dependent variables, i.e., the
magnitude of a main factor treatment effect on the dependentvari-
ables. We used the Coehn standardized difference between two
groups [2], defined as the difference between the means (M1 and
M2), divided by the pooled standard deviation (σ) of both groups
d = (M1 − M2)/σ. The effect size is considered small for d=0.2,
medium for d=0.5 and large for d=0.8. We observed a positive (i.e.,
Fit is better than only Text) andmediumeffect size forExp I (0.54),

Table 6: Fraction of test cases passed: within subject difference
descriptive statistics and results of Wilcoxon test (one-tailed).

Exp Subjects Diff Diff Diff p
Med. Mean σ value

I 14 0.19 0.09 -0.09 0.17
II 8 0.26 0.27 0.03 0.01
III 5 pairs -0.028 -0.08 0.02 0.78
All 27 0.13 0.12 -0.009 0.01

andExp III (0.57), and alarge effect for theExp II (1.22). The ef-
fect size for the overall data set is positive, andmedium(0.72).

Since subjects performed the task, over the two differentSystems,
with the two possible treatments (i.e. Fit and Text), it is possible
to use a paired, one-tailed Wilcoxon, test to compare the effects
of the two treatments on each subject. As shown in Table 6, only
for Exp II there is a significant difference between Fit and Text (p-
value=0.01). The median difference is positive forExp IandExp II,
while it is negative forExp III. When using Fit, on average subjects
improved of 15% forExp I, 44% forExp II, while a 6% decrease
was observed forExp III.

In summary, using unpaired statistical tests hypothesisH0c could
be rejected forExp I, Exp II. Using paired statistical tests we can
rejectH0c only for Exp II. Overall (i.e., considering all data) using
unpaired and paired statistical tests we can rejectH0c. In particular,
unpaired tests permit the hypothesis rejection forExp I andExp II,
while paired tests only forExp II.

4.2 RQ2: Does the presence of Fit tables
affect the time in the execution of
maintenance interventions?

To answerRQ2, we analyzed the time spent by subjects when Fit
Tables were available or not. As described in Section 3.3, weasked
subjects to annotate the time needed to setup the environment, and
the time needed to perform each maintenance task. For sake ofsim-
plicity, we only report the total time of all tasks, including the setup
time, since this result could be validated by the researchers and
results obtained by excluding the setup time were consistent with
these (R2=0.95, p-value<0.01). Descriptive statistics and results
of the Mann-Whitney test are shown in Table 7, while boxplotsare
shown in Figure 3. In all the three experiments no significantdif-
ference was found, however:

• In Exp I andExp II median and mean times with Fit tables
were slightly higher than values without Fit tables. The ef-
fect size was small for both experiments (d=0.16 forExp I
and 0.28 forExp II). In these two experiments, as shown
in Section 4.1, subjects with Fit tables were able to deliver
source code for which a significantly higher fraction of test
cases passed. In other words, Fits required subjects to spend
some more time, although this was paid back by a higher
code correctness.

• In Exp III subjects with Fit spent less time than subjects with-
out Fit. The effect size was high (d=-1.4) however not sta-
tistically significant due to the small number of subjects. Of
course, absolute times cannot be compared with the other ex-
periments since in this case subjects worked in pair (although
times without Fit are comparable with other experiments),

Table 5: Fraction of test cases passed: descriptive statistics per Method, and results of Mann-Whitney test (one-tailed).
Exp Fit Text p Effect

Subjects Median Mean σ Subjects Median Mean σ value size (d)
I 14 0.7 0.6 0.1 14 0.5 0.5 0.2 0.04 0.54
II 8 0.9 0.8 0.2 8 0.6 0.6 0.1 <0.01 0.57
III 6 pairs 0.7 0.6 0.1 7 pairs 0.6 0.6 0.1 0.1 1.22
All 28 0.7 0.7 0.2 29 0.6 0.6 0.2 <0.01 0.72

Table 7: Total time spent (in min.): Descriptive statisticsper
Method, and results of Mann-Whitney test (two-tailed).

Exp Fit Text p Effect
Med. Mean σ Med. Mean σ value size (d)

I 82.0 77.7 18.5 80.0 74.9 14.5 0.5 0.16
II 79.5 82.2 23.2 75.0 75.0 28.3 0.5 0.28
III 51.5 49.5 18.2 94.0 92.0 25.0 0.1 1.4

no yes no yes no yes

40
60

80
10

0
12

0

T
ot

al
 ti

m
e

sp
en

t [
m

in
.]

Fit tables:
I II IIIExp:

Figure 3: Boxplots of total time spent.

however such a difference is worth of a deeper discussion.
We believe that, when Fit was not available, subjects, who
were less expert than inExp I andExp II, spent more time
inspecting the code and testing it to increase its correctness,
while, when Fit was available, they spent less time and relied
on the Fit table.

A paired analysis (Wilcoxon test) was performed for subjects par-
ticipating in both labs of each experiment. Also in this case, results
indicate no significant difference (p-value=0.66 forExp I, 0.55 for
Exp II and 0.25 forExp III. HypothesisH0t cannot be therefore
rejected.

4.3 Effect of other factors
This section analyzes the effect of other factors on the dependent
variables (fraction of test cases passed and Time), namely of Lab
(i.e., whether a result was obtained in the first or second session, to

Table 8: Two-Way ANOVA of Fit & Exp.
Df Sum Sq Mean Sq F value Pr(>F)

Fit 1 0.27 0.27 9.27 0.003
Exp 2 0.20 0.10 3.45 0.039
Fit:Exp 2 0.08 0.04 1.33 0.27
Residuals 51 1.52 0.03

evaluate the learning effect),Systemand of the different subjects’
Experience. The analysis was performed by using a two-way Anal-
ysis of Variance (ANOVA).

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

0.
85

Fit

m
ed

ia
n

of
 C

om
pl

et
e

no yes

 Exp

II (PhD)
I (master)
III (undergrad. Pairs)

Figure 4: Interaction plot of main factor with Subjects Experi-
ence.

On the overall data set, we found no significant effect of theSystem
on the fraction of test cases passed (p-value=0.97) nor any inter-
action with the main factor (p-value=0.88). Similarly, nonsignifi-
cant results were obtained analyzing data for each experiment sepa-
rately. Also theLab factor did not produce any significant effect on
the fraction of test cases passed (p-value=0.13) nor any interaction
with the main factor (p-value=0.58). Results were confirmedana-
lyzing each experiment separately. The third factor we considered
was the type of subjects for the different experiments (Exp). In this
case, as shown in Table 8, the effect is significant (p-value=0.039).
In other words, subjects with different experience gained different
benefits from the use of Fit tables. Figure 4 shows the interaction
plot of theExperiencefactor with the main factor. Such an interac-
tion is not overall statistically significant (p-value=0.27), although

Table 9: Spearman correlation between Time and fraction of
test cases passed.

Experiment Correlation p-value
Exp I -0.064 0.76
Exp II 0.17 0.53
Exp III 0.018 0.97

we can find a significant difference betweenExp I andExp II that
is also graphically visible (Tukey multiple comparisons ofmeans
p-value=0.03). By observing the interaction plot we observed that
the potential benefits gained with the presence of Fit tablesare rep-
resented by the slope of the segments: the slope — and thus the
benefit gained with Fit — is higher for high experience subjects
(master students and above all PhD students).

Then, we analyzed whether the type of maintenance task performed
in the four different tasks assigned to subjects (corrective main-
tenance or evolution) had an effect on the code correctness or an
interaction with the main factor. To test the presence of such an
effect, we performed a two-way ANOVA byMethod & Mainte-
nance Type. In all the three experiments, a significant influence of
the type of maintenance task was found (p-value=1.616 ·10−14 for
Exp I, 0.00023 forExp II, and7.744·10−12 for Exp III). Instead, no
interaction was found with the main factor (p-value=0.73 for Exp
I, 0.36 forExp II, and 0.92 forExp III). In other words, although
subjects were able to better perform (in terms of resulting code cor-
rectness) corrective maintenance tasks than evolution tasks this did
not depend on the main factor treatment (availablility of Fit tables).

To analyze the effect of Time, a two-way ANOVA of Time by
Method & Systemand byMethod & Labwas performed for the
three experiments. No significant effect of theSystemfactor was
found (p-value=0.21 forExp I, 0.064 forExp II and 0.48 forExp
III) on the Time, nor any significant interaction of these factors with
theMethod(p-value=0.66 forExp I, 1.00 forExp II and 0.068 for
Exp III). Similarly, no significant effect of theLab factor was found
(p-value=0.35 forExp I, 0.76 forExp II and 0.49 forExp III) nor
any significant interaction with theMethod (p-value=0.4 forExp
I, 0.65 forExp II and 0.068 forExp III). An analysis of the over-
all data set was not possible in this case since times for pairs (Exp
III) cannot be compared with times of singles (other experiments).
Results indicate that (i) the two different systems did not require a
significantly different time to be maintained; and, (ii) there was no
learning between the two laboratories.

The effect of maintenance task type (corrective maintenance or evo-
lution) on the time needed to perform the task was significantfor
Exp I (p-value=0.01) andExp II (p-value=1.096 · 10−6), while
marginally significant forExp III (p-value=0.06). No interaction
was found with the main factor (p-value=0.77 forExp I, 0.65 for
Exp II, and 0.77 forExp III). While subjects spent more time for
evolution tasks, there was no significant difference where Fit tables
were available or not.

Finally, we analyzed whether there was any correlation between
the two dependent variables, i.e., the time spent and the fraction
of test cases passed. This is because the code correctness could
depend on the time subjects spent to perform the task, ratherthan
on the main factor treatments. As shown in Table 9, the Spearman
(non-parametric) correlation is low and not significant.

4.4 Survey Questionnaire Results
This section analyzes results from the survey questionnaire. We
considered the answers from the questionnaire in agreementwith
the question sentence when the median was less than 3 (using the
one-tailed Mann-Whitney test). Comparison among the threeex-
periments was done using the Kruskal-Wallis test, while differences
between results of different treatments was tested using a two-tailed
Mann-Whitney test. Boxplots of survey questionnaire results for
the three experiments are presented in Figure 5.

Besides the treatment received, for all the three experiments sub-
jects felt to have had enough time to complete the task (Q1), and
felt the laboratory objectives (Q2) and the system descriptions (Q3)
clear. The change requirements (Q4) were clear forExp I (gradu-
ate students) (median=2) andExp III (pairs of undergraduate stu-
dents) (median=1) but not forExp II (PhD students) (median=2.5).
The difference among the three experiments was significant (p-
value<0.01).

In all three experiments subjects found the code easy to read(Q5)
with no particular difference depending on the presence of Fit ta-
bles. Also, in all cases subjects partially agreed not to have had
difficulties in implementing the changes (Q6), although forExp II
subjects with Fit seemed to perceive more difficulty (median=3)
than subjects without Fit (median=2). In this case, difficulties were
higher for subjects ofExp III (median=3), although the differences
from agreements of the other two experiments were not significant
(p-value=0.6 forExp I and 0.5 forExp II).

Q7 clearly indicated how subjects ofExp I and Exp II benefited
more of the use of Fit than subjects ofExp III (p=0.04). In fact,
despite the availability of Fit tables, subjects ofExp III required
a median number of executions between 7 and 10 to implement
the change. Such a number was between 5 and 7 for subjects of
Exp II when Fit was not available, and decreased to 1 when Fit
was available. ForExp I the median number was between 5 and
7 without Fit tables and between 2 and 4 with Fit tables. In other
words, forExp IandExp II, Fit test case execution helped to reduce
the number of manual test necessary before releasing the changed
software.

QuestionsQ8-Q11 were only asked to subjects having Fit tables
available. Subjects for all three experiments felt Fit tables useful
for defect correction (Q8 andQ9). Subjects ofExp I andExp III
indicated Fit tables as useful for regression testing (Q10) and for
comprehension (Q11) (median=2 in all cases), while subjects of
Exp II were undecided (median=3 for both questions).

5. DISCUSSION
By looking at the experimental results, two notable facts emerge.
First, experienced developers (graduate students and PhD students
in particular) receive much more benefits from Fit tables than novice
developers (undergraduate students). When Fit tables are avail-
able, PhD students are able to outperform all other subjects, while
master students are able to perform as well as pairs of undergrad-
uate students. This can be due to the expertise and level of ma-
turity that may be needed to understand the change requirements
“by example” and to assess the correctness of the maintainedcode
through Fit table execution. Graduate students have previously
taken classes on software engineering and have followed advanced
courses on testing. PhD students even had the opportunity ofap-
plying testing in practice when working on research projects; this
allows them to exploit the availability of test cases (Fit tables) dur-

�����
����	
��

	 ������������� ���

��� �! ��"�!"��#�!#�� $$$$$%%$$%$$$$$$$$
(a) Exp I

&'()*
+,-./01230/ 44456789:;<=4 >?@AB>?@AB>?@AB>?@AB>?@AB>?@AB>?@AB>?@AB>?@AB>?@AB>?@AB

CDEFG
HH

IIJKI
HLJKHHLJKLJKLJKLLIIJKIJKL

(b) Exp II

MNOPQ
RSTUVWXYZWV [[[\]^_`abcd[efghiefghiefghiefghiefghiefghiefghiefghiefghiefghiefghi

jklmn ooop
qqrrooppoopooo

(c) Exp III

Figure 5: Survey questionnaire results.

ing the maintenance task. Undergraduate students only knowbasic
testing principles and techniques, and had less opportunity during
their career to be testers. They felt more comfortable with inspect-
ing the code and performingad hoc testing, as visible from the
larger number of executions needed before releasing the changed
code (questionQ7 of the survey questionnaire). Overall, there is
no significant increase of time needed to perform the tasks when
Fit is available, and also the measured effect size is small.This in-
dicates that, provided a previous training, the overhead introduced
by understanding and executing Fit tables is limited and also coun-
terbalanced by the need forad hoctesting, and inspections when
Fit tables are not available.

The second result that emerges from the experiment is that, when
working in pairs, the benefit introduced by Fit tables is reduced.
Working in pairs make requirement understanding easier, hence re-
ducing the requirement clarification role played by Fit tables. Ben-
efits of Fit tables are inferior if developers can comprehendrequire-
ments in pairs. Feedback provided by subjects (questionsQ4, Q10
andQ11) were in agreements with quantitative results obtained in
the experiment. The pair cooperation helps to better understand re-
quirements and, above all, to improve the code correctness when
performing the maintenance task. This because while one subject
codes, the other inspects the code under development and provides
feedbacks whenever necessary. Such an inspection acts as analter-
native to Fit table execution, or at least reduces its capability to re-
veal failures since many programming errors are already corrected
during the development. It looks like the observer in the pair is
mentally simulating the execution of the code being writtenunder
relevant scenarios, hence reducing the role of Fit table execution.
However, further experiments are needed to confirm this finding,
since pairs (Exp III) were less experienced than subjects for other
experiments. Because of that, such a result can just be due tothe
different experience level.

5.1 Threats to validity
This section discusses the threats to validity [16] that canaffect
our results:construct, internal, conclusion, andexternalvalidity
threats.

Construct validitythreats concern the relationship between theory
and observation. In particular, this threat is related to how code cor-
rectness after maintenance interventions and time were measured.
The code correctness was assessed in a objective way by execut-
ing a JUnit functional test suite and measuring the percentage of
test cases passed and failed. To avoid bias, the JUnit test suites
were developed independently from the acceptance test suites. The
developed test suites are representative of functional test suites de-
veloped according to the category partition technique. By using a
code coverage tool, we also verified that the developed test suites
were able to ensure a high statement coverage (between 80% and
100%) for the methods impacted by the changes. Of course, other
test suites could possibly produce different results. Timewas mea-
sured by means of proper time sheets and validated qualitatively
by researchers who were present during the experiment. Although
this may not be very accurate, this is a widely adopted way of mea-
suring performance (monitoring is often not possible for legal rea-
sons), and teaching assistants checked that the forms were correctly
filled.

Internal validity threats concerns external factors that may affect
an independent variable. A proper analysis — i.e., two-way ANOVA
—was performed to analyze the effect of these factors. Although

it was impossible to properly discern the effect of pairs from that
of experience: to achieve it we would need a specific experiment,
that will be part of our future work. Otherinternal validity threats
can be due to the learning effect experienced by subjects between
Labs. Such an effect is mitigated by the chosen experimental de-
sign: subjects worked, over the twoLabs, on different systems with
different levels of the main factor (Fit vs. Text). Also, theLab ef-
fect was measured with a two-way ANOVA and was found not to
be significant. Also (see Table 4), the chosen design considers all
combinations of systems and main factor treatments (i.e., Fit tables
available or not). This mitigates the impact due to the fact that an
individual/pair used one treatment before the other. To avoid social
threats due to evaluation apprehension, students were not evalu-
ated on their performance. Although subjects participating to each
experiments had a similar background, ability was not explicitly
assessed before the experiment. Finally, subjects were notaware of
the experimental hypotheses.

Conclusion validityconcerns the relationship between the treat-
ment and the outcome. Proper tests were performed to statistically
reject the null hypotheses. The small sample size (overall 40 sub-
jects, however the analyses were applied to 32 points, sincefor
Exp III subjects worked in pairs) could have limited the capabil-
ity of statistical tests to reveal any effect. However, attention was
paid to not violate assumptions made by statistical tests and, when-
ever conditions necessary to use parametric statistics didnot hold,
we used non-parametric tests, in particular the Mann-Whitney test
for unpaired analyses, the Wilcoxon test for paired analyses and
the Tukey test for multiple comparisons. The measure chosento
evaluate the code correctness, i.e., the fraction of JUnit test cases
passed, allowed to evaluate the maintenance tasks executedby stu-
dents in an objective manner, avoiding to give subjective scores.
Survey questionnaires, mainly intended to get qualitativeinsights,
were designed using standard ways and scales [10].

External validityconcerns the generalization of the findings. Threats
belonging to this category can be related to (i) the simple Java sys-
tems chosen and (ii) to the use of students as experimental subjects.
The selected subjects represent a population of students specifically
trained on software engineering tasks. Also, all subjects involved
in Exp I (graduate students) andExp III (PhD students) either had
some professional experiences or worked on industrial projects dur-
ing their thesis. This makes these students comparable to industry
junior developers. Nevertheless, the working pressure andthe over-
all environment in industry is different, thus replicatingthe study
in industry is highly desirable. Further studies with larger systems
and more experienced developers are needed to confirm or contrast
the obtained results. Finally, our study focused on the use of Fit,
although other acceptance testing frameworks (e.g., [5, 15, ?]) can
also be used.

6. RELATED WORK
Although there are papers [1, 12] and books [9] describing accep-
tance testing with Fit tables, only a few works report empirical stud-
ies about Fit.

Readet al. [12] found that experience can affect the understand-
ability and the capability of defining the functional requirements
for writing acceptance test cases. In particular, authoring accep-
tance tests is more difficult than reading and understanding. Since
writing acceptance tests requires practice and experience, the sup-
port of a tool is not enough. The need for experience is reflected
in our results, where graduate students benefited more of Fitthan

undergraduate.

Melnik et al. [7] investigated on the use of Fit user acceptance
tests for specifying functional requirements. They conducted ex-
periments at the University of Calgary and at the Southern Alberta
Institute of Technology. Results showed that the use of Fit tables
and the possibility to execute them improve the comprehension of
requirements. In this experiment, students worked on theirown
(off-line) for two weeks.

Also, Melnik et al. [6] investigated whether acceptance tests can
be authored effectively by customers of agile projects. Theauthors
carried out an experiment, involving 40 students as subjects, who
were enrolled in business school for graduate students and com-
puter science graduate and undergraduate students. The experiment
did not support the hypothesis that the quality of executable accep-
tance tests produced by the customer team will be strongly and pos-
itively correlated with the quality of the implementation produced
by the development team. However, results show that customers
can specify functional requirements clearly. The main differences
between [6, 7] and our work are the way subjects worked (off-line
vs. on-line), the kind of task (development vs. maintenance), and
the measurement instrument (questionnaires vs. code correctness
measured through JUnit functional test suites).

In Denget al.’s study [3] a survey on Acceptance Test Driven De-
velopment has been conducted with 33 professionals by sending a
questionnaire. The study concludes that the time frame between
the definition of an acceptance test and its first successful pass is
much longer than that of unit testing. The average time framefor
acceptance testing is more than 4 hours, i.e., more than halfa day.
Starting from this result the authors built a new tool, namedFit-
Clipse, able to distinguish the two possible “failing cases”. Color
red indicated a regression failure (i.e., failure as a result of a re-
cent change losing previously working functionality) while orange
suggest that there is an unimplemented feature (not a failure). An
initial self-evaluation shows that the distinction between the failure
states and the use of FitClipse is useful.

Ricca et al. [13] report a controlled experiment with master stu-
dents aimed at assessing the impact of Fit tables on the clarity of
requirements. The main difference with the present study isthat
in [13] students could only use the Fit tables to better graspthe re-
quirements while in our case, students had the Fit tables andthe
Fixtures with the possibility to execute them. The results obtained
indicate that Fit helps in the understanding of the requirements but
involves additional effort (even if not in significant way).

In a companion paper [14] some of the authors of the present paper
reported some partial analyses and some results from the experi-
ment conducted in Trento with master students (Exp I). The second
and third experiment (Exp II, Exp III) are presented here for the
first time.

7. CONCLUSIONS AND FUTURE WORK
This paper reported a series of experiments aimed at assessing the
benefits obtained in performing maintenance tasks with the support
of Fit tables. Results indicated that (i) the maintained code is more
correct when Fit is available; and (ii) the overhead inducedby the
presence of Fit — measured in terms of time — is negligible.

In addition, interesting effects of two co-factors, experience of sub-
jects and work organization, i.e., working in pairs or as singles —

were found that:

1. the benefits of Fit were higher for subjects with a higher ex-
perience, such as PhD students. They were able to improve
the correctness of the maintained code of 44% on average;
and

2. working in pairs seemed to compensate the benefits of Fit in
terms of correctness although it may reduce the time required
to perform the task.

Work-in-progress is devoted to better analyze, with specific exper-
iments, the effect of work organization (e.g., working in pairs) on
the usefulness of Fit tables. In addition, it would be worth of inves-
tigating whether the progressive increase in benefits we observed
in our experiments will keep for professional developers. Last, but
not least, future empirical studies will aim at analyzing whether the
additional effort and cost — encountered during the requirement
elicitation phase — due to the development of Fit tables, will be
paid back by a higher code correctness. In other words, if on the
one hand the present experimentation has shown the benefits intro-
duced by Fit tables, the adoption of such a technique in the software
development life-cycle must be considered taking into account the
costs it will introduce.

8. ACKNOWLEDGMENTS
Massimiliano Di Penta and Marco Torchiano were partially sup-
ported by the project METAMORPHOS (MEthods and Tools for
migrAting software systeMs towards web and service Oriented aR-
chitectures: exPerimental evaluation, usability, and tecHnOlogy
tranSfer), funded by MiUR (Ministero dell’Università e della Ri-
cerca) under grant PRIN2006-2006098097.

9. REFERENCES
[1] J. Aarniala. Acceptance testing. Inwhitepaper.

www.cs.helsinki.fi/u/jaarnial/jaarnial-testing.pdf, October 30
2006.

[2] J. Cohen.Statistical power analysis for the behavioral
sciences (2nd ed.). Lawrence Earlbaum Associates,
Hillsdale, NJ, 1988.

[3] C. Deng, P. Wilson, and F. Maurer. Fitclipse: A fit-based
eclipse plug-in for executable acceptance test driven
development. InProceedings of the 8th International
Conference on Agile Processes in Software Engineering and
eXtreme Programming (XP 2007). Springer, 2007.

[4] N. Juristo and A. Moreno.Basics of Software Engineering
Experimentation. Kluwer Academic Publishers, Englewood
Cliffs, NJ, 2001.

[5] K. Leung and W. Yeung. Generating user acceptance test
plans from test cases. InProceedings of the 31st Annual
International Computer Software and Applications
Conference - Vol. 2- (COMPSAC 2007), pages 737–742, Los
Alamitos, CA, USA, 2007. IEEE Computer Society.

[6] G. Melnik, F. Maurer, and M. Chiasson. Executable
acceptance tests for communicating business requirements:
customer requirements. InProceedings of AGILE 2006
Conference (AGILE2006), pages 35–46, Los Alamitos, CA,
USA, 2006. IEEE Computer Society.

[7] G. Melnik, K. Read, and F. Maurer. Suitability of fit user
acceptance tests for specifying functional requirements:
Developer perspective. InExtreme programming and agile

methods - XP/Agile Universe 2004, pages 60–72, August
2004.

[8] B. Meyer. On formalism in specification.IEEE Software,
January 1985.

[9] R. Mugridge and W. Cunningham.Fit for Developing
Software: Framework for Integrated Tests. Prentice Hall,
2005.

[10] A. N. Oppenheim.Questionnaire Design, Interviewing and
Attitude Measurement. Pinter, London, 1992.

[11] T. Ostrand and M. Balcer. The category-partition method for
specifying and generating functional tests.Communications
of the Association for Computing Machinery, 31(6), June
1988.

[12] K. Read, G. Melnik, and F. Maurer. Examining usage patters
of the fit acceptance testing framework. InProc. 6th
International Conference on eXtreme Programming and
Agile Processes in Software Engineering (XP2005), pages
Lecture Notes in Computer Science, Vol. 3556, Springer
Verlag: 127–136 2005, June 18-23 2005.

[13] F. Ricca, M. Torchiano, M. Ceccato, and P. Tonella. Talking
tests: an empirical assessment of the role of fit acceptance
tests in clarifying requirements. InInternational Workshop
on Principles of Software Evolution (IWPSE 2007), pages
51–58. ACM Press, September 2007.

[14] F. Ricca, M. Torchiano, M. Di Penta, M. Ceccato, and
P. Tonella. On the use of executable fit tables to support
maintenance and evolution tasks. InThird International
ERCIM Symposium on Software Evolution (2007), Sep 2007
(to appear).

[15] J. Sauvè, O. Abath Neto, and W. Cirne. EasyAccept: a toolto
easily create, run, and drive development with automated
acceptance tests. InProceedings of 2006 international
workshop on Automation of software test, pages 111 – 117,
New York, NY, USA, 2006. ACM Press.

[16] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson, B. Regnell,
and A. Wesslén.Experimentation in Software Engineering -
An Introduction. Kluwer Academic Publishers, 2000.

[17] R. Young.Effective Requirements Practice. Addison-Wesley,
Boston, MA, 2001.

