Are Fit Tables Really Talking?
A Series of Experiments to Understand whether Fit Tables
are Useful during Evolution Tasks

Filippo Ricca', Massimiliano Di Penta?, Marco Torchiano?
Paolo Tonella*, Mariano Ceccato?, Corrado Aaron Visaggio®
lUnita CINI at DISI, Genova, Italy
2RCOST - University of Sannio, Benevento, Italy
3Politecnico di Torino, Italy
‘Fondazione Bruno Kessler—-IRST, Trento, Italy
filippo.ricca@disi.unige.it, dipenta@unisannio.it,deiano@polito.it,tonella@itc.it, ceccato@itc.it, viggo@unisannio.it

ABSTRACT

Test-driven software development tackles the problem efrap
tionally defining the features to be implemented by meanesff t
cases. This approach was recently ported to the early qewelat
phase, when requirements are gathered and clarified. Anheng t
existing proposals, Fit (Framework for Integrated Tegtewgpports
the precise specification of requirements by means of sec&iit
tables, which express relevant usage scenarios in a tabufaat,
easily understood also by the customer. Fit tables can bedur
into executable test cases through the creation of pieceguef
code, called fixtures.

In this paper, we test the claimed benefits of Fit through eserf

three controlled experiments in which Fit tables and rell&it¢ures

are used to clarify a set of change requirements, in a saftexaiu-

tion scenario. Results indicate improved correctnesseaetiwith

no significant impact on time, however benefits of Fit vary sub-

stantial way depending on the developers’ experienceirfirelry

results on the usage of Fit in combination with pair prograngm
revealed another relevant source of variation.

Categories and Subject Descriptors
D.2.1 [Requirements/Specificationg Methodologies, Tools

General Terms
Experimentation, Measurement

Keywords

Empirical studies, Acceptance test, Software Maintenance

1. INTRODUCTION

When specifying requirements and change requests in hédara
guage, analysts have to avoid several “sins” [8] that mawpgori

about interpretation problems between analysts and desedoSo-
me of them arenoise i.e., information not relevant to the problem
or a repetition in the requirementsijence when important infor-
mation is missing, opver-specificationwhen portions of the so-
lution are mentioned in the requirements. A substantigbrion
of code defects, as high as 85%, originates at the requirestien
itation phase [17], both for initial requirements and foanbe re-
quests, during software evolution. The root cause for sedbatis
can be associated with ambiguous, incomplete, inconsjsitent
(unexpressed), unusable, over-specific or verbose reneires [8].
Test-driven development advocates a central role fongstind test
cases, used to capture the features to be implemented imaHet
can be checked automatically through execution. Unit tases
show the development progress for single modules. Simpjlax-
ecutable acceptance test cases have been proposed to eraadur
describe precisely the level of progress in the implemeantabf
the initial requirements or change requests. Accordindecenile
methodologies [7], acceptance test cases are deemed necisepr
and accurate sources of information about the customerisine
ments than their description in natural language. Acceagtdast
cases are “talking” representation of the requirementschwban
be consulted whenever ambiguities or misinterpretatioa anise.

Among the technologies for supporting automated acceptaast-
ing, Fit (Framework for Integrated Test) [9] is one of the truap-
ular and widely used. Fit helps analysts write acceptansts tey
means of simple HTML tables (Fit tables), including inputiaax-
pected output for each test scenario. Different kinds oethbre
used for different testing conditions, e.g., testing thgoufor a
given sequence of values vs. testing the result of a sequafnce
actions. Developers write glue code (calliextureg to link the
test cases expressed in the Fit tables with the system uegel-d
opment. Once fixtures are available, tiest runnercan execute
them, comparing Fit table data (expected output) with datalk
ues obtained from the execution.

In this paper, we measure the effects of the adoption of Fitse-
ries of three controlled experiments, varying by subjest®lived
and working conditions. We evaluated the usage of Fit with su
jects having different levels of programming skills and veasid-
ered, in one replication of the experiment, subjects waykirpairs
(pair programming). This study has two objectives: on the on
hand, we want to empirically evaluate the effects of Fit andlar-
ification of requirements, in terms of correctness of thailtes

fit_tests.DiscountStructure fit.ActionFixture

smal | bags | beverage | di scount | total price() start [fit_tests. VerifySupply
2 Cof f ee 0 1.24 enter | type of product Cof f ee
4 Tea 0 2.48 check | nunber of small bags renmained | 10
5 Cof f ee 1 2.1 enter [nunber of boxes 5
5 Tea 0 3.1 press | buyi ng boxes
7 Cof f ee 1 3.34 check [nunber of small bags rem ned 310
7 Tea 0 4.34 check [cash account 845

(a) Column Fit table. Each row represents a test case: Hé tath- (b) Action Fit table. The table represents a test case andaime

umn’s names without parentheses represent input, pasagliedi-mands simulate the user actions.

cate output.

Figure 1: Examples of Fit tables.

code. On the other hand, we want to also evaluate the imp#&dt of
on the time necessary to complete the task (i.e., the timénesd
involved, if any). Results indicate that benefits are oladimwith
no substantial increase of involved task execution timewéi@r,
results vary largely, depending on the level of expertis¢hefin-
volved subjects. Expert subjects can take advantage of k¢hm
more than inexperienced ones. Moreover, for subjects wgrki
pairs, the presence of Fit does not make any significantrdiffee,
in terms of time and of correctness of resulting code. Thig ma
dicate a complementary role of pair programming with respec
the availability of executable acceptance test casesevehievel-
oper is coding, the other inspects the code to avoid thedatriiion
of faults.

The paper is organized as follows: Section 2 provides sorsie ba
backrounds on Fit and can be skipped by the reader alreadljdiam
with it. Section 3 gives the details of the experimental gesie
used and Section 4 reports the experimental results. Westisc
the results and threats to validity in Section 5. Relatecke/@re
discussed in Section 6, and Section 7 concludes the paper.

2. FRAMEWORK FOR INTEGRATED

TEST
Acceptance testing is a validation activity, performed bg tus-
tomer, on the entire system, just before the system is detivend
aimed at judging if the software is acceptable.

Very often, acceptance testing is performed in a rathemriné
fashion, and it is no more than a software demonstration. -How
ever, it would be highly desirable to have acceptance testscare-

cisely defined, and to have the acceptance testing phaseras mo

automated as possible. Clearly, it is impossible to exgetdtdus-
tomers — in most cases lacking software development experti
are able to develop test drivers for test case executiontoGss
should be allowed for specifying acceptance test cases aaay
way, without having to deal with source code developmeegtion
of drivers, scripts, etc.

To this aim, frameworks such &t [9] have been conceivedFit
(Framework for Integrated Test) is an open source framewsekl

to express acceptance test cases, with the aim of improhieg t
communication between analysts and developers. Fitlstegers
and analysts write acceptance tests in the form of tabietsples
using simple HTML or even spreadsheets.

A Fit table specifies the inputs and expected outputs fordbe t
Figure 1-(a) shows an example of Column Fit tables, a pdaticu
kind of table where each row represents a test case. Thetfiest t

columns are input valuesihall bags beverageanddiscoun} and

the last column represents the corresponding expectedtotstiue
(total price()). Other tharColumnFit tables, it is possible to spec-
ify Action Fit tables (see Figure 1-(b)), to test user interfaces or
workflows. AnActionFit table represents a test case where the first
column contains commandstért, enter, pressandchech used to
simulate the actions that a user would perform on a screele tiig
other columns contain the parameters. For examplerdsscom-
mand simulates the button click and the parameter is the mdme
the button. Others types of Fit tables (see [9]) &ewFit tables,

to validate collection of objects produced as the result qtiery
and TimedActionFit tables to deal with temporal, non functional
requirements.

Fit tables cannot however be directly executed againstytbes
under test. To this aim developers have to specify drivatied
Fixtures to link the test cases to the system under test. A com-
ponent in the framework, th€est Runnerexecutes the test cases
by relying on theFixtures and compares Fit table data with actual
values obtained from the System. The test runner highligtgs
results with colors (green = correct, red = wrong).

3. EXPERIMENT PLANNING

This section describes the definition, design and settifigheo
proposed experimentation following the guidelines by Wolsit

al. [16] and Juristo and Moreno [4]. Table 1 summarizes the main
elements of the experimentation. For replication purpotesex-
perimental package has been made avaitable

3.1 Experiment definition and context selec-
tion
The goal of the study is to analyze the use of Fit tables with the
purposeof evaluating their usefulness during maintenance tasks.
Thequality focusregards (i) the capability of Fit tables of support-
ing maintenance tasks, and (ii) the additional time thatuse of
Fit table might require. Thperspectivas both ofResearchersn-
vestigating on the effectiveness of Fit tables during a teai@nce
task, and oProject managersevaluating the possibility of adopt-
ing the Fit tables in her/his organization. Toentextconsists of
two objects— two Java systems — and sfibjects i.e., three dif-
ferent classrooms of students (bachelor students, mastgrgs,
and PhD students). The objects of the study are two simple Jav
programs).aTazzaandAveCalc

LaTazzas an application for a hot drinks vending machine. LaTazza
supports sale and supply of small-bags of beverages (Cdféee

Yhttp://www.rcost.unisannio.itymdipenta/Fit-Packagp.

Table 1: Overview of the experiment.
Analyze the support given by Fit tables
on maintenance/evolution tasks.
Correctness of maintained code
Maintenance time

Objects: two Java systems.

Subjects: bachelor, master and PhD studeh
No effect on code correctness.

No effect on maintenance time.
Availability (or not) of Fit tables
Subjects’ Experience, System, Lab,
type of task (corrective vs. evolution)
(i) Code correctness assessed by executing
a JUnit functional test suite.
(i) Time required to perform
the maintenance tasks.

Goal

Quality focus

Context

=3

S.

Null hypotheses

Main factor
Other factors

Dependent variables

Lemon-tea, etc.) from the Coffee-maker. The applicatiqpsuts
two kinds of clients: visitors or employees. Employees can p
chase beverage paying by cash or on credit, visitors onlingdy
cash. The secretary can: sell small-bags to clients, bugsok
beverages, manage credit and debt of employees, checkvre in

Table 2: Characteristics of the systems under study.

LaTazza
Regs | Fittables | Files | LOC
9 18 18 | 1121
AveCalc
Reqgs | Fittables | Files | LOC
10 19 8 1827

while the other of reading (change) requirement, supegishe
developer’s work and inspecting the code under development

In each experiment, all the students are from the same clitdlss w
roughly, the same background. Bachelor students had atigne-
viously Programming and Software Engineering courseschwisi

of course true also of Master and PhD students. All subjéts,
cluding the undergraduate, had a good knowledge on Javegoneg
ming (they previously developed non-trivial systems agguts for

at least 3 exams), and an average knowledge about softwgire en
neering topics (e.g., design, testing, software evolytigkt min-
imum, undergraduate students followed one software eagimg
course where they learned analysis, design and testingifles.

tory and check the cash account. The system consists of &8 Jav Subjects have been trained on the understanding and us#ge of

classes for a total of 1121 Lines of Code (LOC). Its requineime
document comprises 9 requirements complemented with bdfota
16 Fit tables.

AveCalcis a simple “desktop application” that manages an elec-
tronic record book for master students. A student can addva ne

tables and FitNes&gi.e., the tool that implements the Fit table ap-
proach used in the experiments.

3.2 Hypotheses formulation and variable
selection

exam to the register, remove an existing exam and removex-all e The research questions this experimentation aims at asidgesre:

ams. An exam has a name, a CFU (a positive number that rep-

resents the University credits) and an (optional) grade.eRam

without grade is an exam not taken. The grade is between 0 an
If the grade is greater than or equal to 1& th

30 (inclusive).
exam result is positive (passed), otherwise it is negafaied).
It is possible to save the register and to load it. AveCalc aies
some statistics: average of the exams passed, total nuihBeéith
number of exams passed, graduation score and whether tenstu

has passed a number of exams sufficient to defend his/heas.thes
The system consists of 8 Java classes for a total of 1827 LGC. |

requirement document comprises 10 requirements comptechen
with a total of 19 Fit tables.

For both systems, four change requirements (CR) were defined
Two of them (CR1 and CR2) were related to corrective mainte-
nance (e.g., in AveCalc an exam vote must be checked to be pos-

itive), while the other two (CR3 and CR4) were related to tie i
troduction of new (simple) features, e.g., change of bgesell-
ing policy for the LaTazza application. As for other requients,
change requirements were complemented with Fit tableddbdb
14 for AveCalc change requirements and 17 for LaTazza chamge
quirements). All Fit tables considered were of differemgdsy, i.e.,
Column, Action and Row Fit tables.

The study was executed twice at the University of Trentoh whif-
ferent subjects, and once at the University of Sannio. The su
jects participating in the two replications in Trento areMdster
students (2nd year M.Sc.) attending the Laboratory of Swoftw
Analysis and TestingExp I) and 8 PhD studentEkp Il). At the
University of Sannio, the 18 Bachelor students (3rd yeaenaling
the course of DatabaseBXp Ill) were involved. In this last case
students worked in pairs: one was responsible of writingctide,

gRQ1: Does the presence of Fit tables help programmers to im-

prove the correctness of maintained code after a maintehanc
evolution tasks?

RQ2: Does the presence of Fit tables affect the time in the execu-
tion of maintenance interventions?

Once research questions are formulated, it is possibleahem
into null hypotheses that can be tested in an experiment:

e Hy. The availability of Fit test cases does not significantly
improve the correctness of the maintained source code.

e Hy: The availability of Fit test cases does not significantly
affect the time required for the maintenance task.

We can notice thafiy. is one-tailed since we are interested to
investigate whether Fit improves the correctness, wHileis two-
tailed, since we do not know whether the use of Fit requires addi-
tional time or, on the other hand, might reduce the time ne:éole
the maintenance task.

The treatments for the main factor (availability of testessare:

e (+) application requirements and change requirements en-
hanced with fit tables and fixtures, thus enabling test case
execution;

2http://www.fitnesse.org

Table 3: Post-experiment survey questionnaire.

ID | Question

ge?

Q1 | I had enough time to perform the lab tasks (1-5).
Q2 | The objectives of the lab were perfectly clear to me (1-5).
Q3 | The description of the System was clear (1-5).
Q4 | The change requirements were perfectly clear to me (1-5).
Q5 | I experienced no difficulty in reading the source code (1-5).
Q6 | | experienced no difficulty in correcting the defects andlenpenting the changes (1-5).
Q7 | How many executions (i.e., run of the System) have you doreverage before having implemented the chan
(A. =1; B. >=2 and<4; C.>=5 and<7; D. >=7 and<10; E.>=10)
Q8 | Did you find change fit tables useful in correcting defects®)a
Q9 | Did you find running change fit tables tests useful in cornectefects? (a—e).
Q10 | Did you find running requirements fit tables tests (regregsigeful ? (a—e).
Q11 | Did you find running requirements fit tables useful in underding the application? (a—e).
1 = strongly agree, 2 = agree, 3= not certain, 4 = disagree t®nagy disagree.
a = very much, b = enough, c = undecided, d = little, e = definitei.

Table 4: Experiment design

(+) = with Fit tables, (-) = without Fit tables.
| | GroupA | GroupB | Group C | Group D |

Lab 1 | LaTazza+| LaTazza-| AveCalc- | AveCalc+

Lab 2 | AveCalc- | AveCalc+ | LaTazza+| LaTazza-

e (-) requirements and change requirements only expressed in
a textual form.

Textual requirements and change requirements were dbtaite
that subjects having Fit tables available did not receiditexhal
information not available in the textual requirements ad.wihe
dependent variables to be measured in the experiment acedee
correctness and the time required to perform the maintentask.
The code correctness is assessed by executing a JUnit test su
and measuring the fraction of test cases passed. Such #dnit t
suites are different from the acceptance test suites andydil
bias, they have been developed independently from the Ifigga
— i.e., by different people — following the category paditing
black-box strategy [11]. A total of 25 test cases for AveGald 24
for LaTazza have been developed. The time needed to perfam t
tasks was measured by means of time sheets; students mtaked s
and stop time for each change requirements implementede iEm
expressed in minutes. The independent variables condidethis
paper are: the Objects (AveCalc and LaTazza), the Labs (@8 it
be shown in the next section, each experiment was orgamzegbi
laboratoriesL.ab 1andLab 2), the subjects’ experience (bachelor
students, master students and PhD students), and the typairof
tenance task performed (i.e., corrective for tasks CR1 aRd,C
evolution for tasks CR3 and CR4).

3.3 Experimental design and procedure

We adopted a balanced experiment design intended to fit two La
sessions (2-hours each). Subjects were split into fourpgoeach
one working in Lab 1 on a system with a treatment and working in
Lab 2 on the other system with a different treatment (seecT4pl

Subjects used the Eclipse Java Development Toolkit as agvel

ment environment, with the FitNesse pludjinsed to browse re-
quirements and Fit tables, and to execute test cases. Ebjgtisu
received an Eclipse project containing the software souozke,
and a FitNesse Wiki with both requirements and change régjues
The experimental package also comprised a short textuatigdes
tion of the application, instructions on how to set-up theim-
ment, a time sheet where subjects annotated the startingosmnd
pletion time for each change requirement, and a post expatim
questionnaire.

Before the experiment, subjects were trained by means ai-int
ductory lectures, followed by laboratories where they hadin-
derstand and develop Fit tables. For each Lab the subjedtsioa
hours available to complete the four maintenance tasks{CR4).

After having configured the environment and read the system d
scription, for each change requirement, subjects had to:

. record the starting time on the time sheet;

. read the change requirement and look at the Fit tables (if
available);

. implement the change requirement;

. if Fit tables were available, run test cases of the applica
tion requirements (for regression testing purposes) atiikof
change requirement, possibly returning to steps 2 and 3 in
case test case failed; and

5. record the completion time on the time sheet.

During the experiment, teaching assistants and professens in
the laboratory to prevent collaboration among subject@acheck
that subjects properly followed the experimental procedr.g.,
they implemented the changes in the given order, they diyrec
annotated the time spent). After the experiment, subjeatsta
fill a post-experiment survey questionnaire. It aimed ahlyatin-
ing insights about the students’ behavior during the expeni and
finding justifications for the quantitative results. It indes ques-
tions (see Table 3) about the tasks and systems compléhétyad-
equacy of the time allowed to complete the tasks and the perte

Shttp://www.bandxi.com/fitnesse/

1.0

0.8

0.6

Fraction of test cases passed
0.4

0.2

T T T T T T
Fit tables: no yes yes
Exp: | 1 m
Availability of Fit tables

no

Figure 2: Boxplots for fraction of test cases passed.

usefulness of the provided Fit tables. More precisely, thestjon-
naire consists of 7 common questions plus 4 questions (Q@3-Q1
answered only by subjects using Fit tables. Answers to Q&6
to Q8-Q11 are expressed in a Likert scale [10] from 1 (stypngl

Table 6: Fraction of test cases passed: within subject diffence
descriptive statistics and results of Wilcoxon test (onediled).

Exp | Subjects | Diff Diff Diff p
Med. | Mean o value
| 14 0.19 0.09 -0.09 0.17
1] 8 0.26 0.27 0.03 0.01
1} 5 pairs | -0.028| -0.08 | 0.02 | 0.78
All 27 0.13 0.12 | -0.009| 0.01

andExp Il (0.57), and darge effect for theExp Il (1.22). The ef-
fect size for the overall data set is positive, anedium(0.72).

Since subjects performed the task, over the two diffeBystems
with the two possible treatments (i.e. Fit and Text), it isgible

to use a paired, one-tailed Wilcoxon, test to compare thectf
of the two treatments on each subject. As shown in Table §, onl
for Exp Il there is a significant difference between Fit and Text (p-
value=0.01). The median difference is positiveExp landExp I,
while it is negative folExp Ill. When using Fit, on average subjects
improved of 15% forExp |, 44% forExp Il, while a 6% decrease
was observed foExp IIl.

In summary, using unpaired statistical tests hypoth&kijs could
be rejected foExp |, Exp Il. Using paired statistical tests we can
reject Ho. only for Exp Il. Overall (i.e., considering all data) using
unpaired and paired statistical tests we can rdjggt In particular,
unpaired tests permit the hypothesis rejectionErp | andExp I,

agree) to 5 (strongly disagree). Answers to Q7 are based en a 5 while paired tests only foExp 1.

levels ordinal scale{ A, B,C, D, E'}.

4. EXPERIMENTAL RESULTS

This section reports the results from the three experimenta-
lyzing the effect on the dependent variables of the mainofact
treatment and of other factors. Finally, results from thalgsis
of survey questionnaires is reported. Results of stadistists are
intended to be significant for a significance level of 95%.

4.1 RQZ1: Does the presence of Fit tables help
programmers to improve the correctness
of maintained code after maintenance/ evo-

lution tasks?

Figure 2 and Table 5 show boxplots, descriptive statistick ra-
sults of the unpaired, one-tailed Mann-Whitney test. Resual
dicate a significant difference between Fit and Text on therail/
data setAll data), for Exp | and forExp Il. While for master and
PhD studentsExp | andExp Il), Fit tables had a significantly posi-
tive effect, this is not the case for undergraduate stud&ns I11).
Although subjects with Fit tables performed better thanjettb
without Fit tables, such a difference was not significarfExp IIl.

The statistical significance alone does not tell anythingualbhe
practical impact of the treatment: it is important to meashe ef-
fect size of the main factor over the dependent variables, the
magnitude of a main factor treatment effect on the dependeint
ables. We used the Coehn standardized difference between tw
groups [2], defined as the difference between the mea&fisand
M), divided by the pooled standard deviatiar) ©f both groups

d = (M; — M2)/o. The effect size is considered small for d=0.2,
medium for d=0.5 and large for d=0.8. We observed a positige (
Fitis better than only Text) antiediumeffect size fotExp | (0.54),

4.2 RQ2: Does the presence of Fit tables
affect the time in the execution of

maintenance interventions?
To answeRQ2, we analyzed the time spent by subjects when Fit
Tables were available or not. As described in Section 3.3sked
subjects to annotate the time needed to setup the enviranareh
the time needed to perform each maintenance task. For saka-of
plicity, we only report the total time of all tasks, includithe setup
time, since this result could be validated by the reseasched
results obtained by excluding the setup time were congistéh
these R?=0.95, p-value0.01). Descriptive statistics and results
of the Mann-Whitney test are shown in Table 7, while boxpsots
shown in Figure 3. In all the three experiments no significhfit
ference was found, however:

e In Exp landExp Il median and mean times with Fit tables
were slightly higher than values without Fit tables. The ef-
fect size was small for both experiments (d=0.16 Eop |
and 0.28 forExp Il). In these two experiments, as shown
in Section 4.1, subjects with Fit tables were able to deliver
source code for which a significantly higher fraction of test
cases passed. In other words, Fits required subjects td spen
some more time, although this was paid back by a higher
code correctness.

e In Exp Il subjects with Fit spent less time than subjects with-
out Fit. The effect size was high (d=-1.4) however not sta-
tistically significant due to the small number of subject$. O
course, absolute times cannot be compared with the other ex-
periments since in this case subjects worked in pair (atthou

times without Fit are comparable with other experiments),

Table 5: Fraction of test cases passed: descriptive statiss per Method, and results of Mann-Whitney test (one-taild).

Exp Fit Text p Effect
Subjects | Median | Mean | o | Subjects| Median | Mean | o | value | size (d)
I 14 0.7 06 |01 14 0.5 05 | 02| 0.04 0.54
I 8 0.9 08 | 0.2 8 0.6 06 | 01| <0.01| 057
1] 6 pairs 0.7 0.6 | 0.1| 7pairs 0.6 06 | 01| 01 1.22
All 28 0.7 0.7 |0.2 29 0.6 06 |02 <0.01| 0.72

Table 7: Total time spent (in min.): Descriptive statisticsper
Method, and results of Mann-Whitney test (two-tailed).

Exp Fit Text p Effect
Med. | Mean o Med. | Mean o value | size (d)
] 820 | 777 | 185] 80.0 [749 [145 05 0.16
I 795 | 822 | 23.2| 750 75.0 | 28.3| 0.5 0.28
11} 515 | 495 | 182 | 940 | 92.0 | 25.0| 0.1 1.4
o
S -
o X .
8
- -
E |
.E, -
e o |
Q [¢e)
&
) T .
£ ! ; ‘
E - : |
e 87 : T
o | o :
¥ :
o J——
| | | | | \
Fittables: no yes no yes no yes
Exp: | 1l 1l

Figure 3: Boxplots of total time spent.

however such a difference is worth of a deeper discussion.

We believe that, when Fit was not available, subjects, who
were less expert than iBxp | and Exp II, spent more time
inspecting the code and testing it to increase its correstne
while, when Fit was available, they spent less time anddelie
on the Fit table.

A paired analysis (Wilcoxon test) was performed for sulsjguzr-
ticipating in both labs of each experiment. Also in this caesults
indicate no significant difference (p-value=0.66 Eoxp |, 0.55 for
Exp Il and 0.25 forExp lll. HypothesisH,; cannot be therefore
rejected.

4.3 Effect of other factors

This section analyzes the effect of other factors on the rolige
variables (fraction of test cases passed and Time), nanfielgto
(i.e., whether a result was obtained in the first or seconsiaesto

Table 8: Two-Way ANOVA of Fit & Exp.

Df | SumSq | Mean Sq | Fvalue | Pr(>F)
Fit 1 0.27 0.27 9.27 0.003
Exp 2 0.20 0.10 3.45 0.039
Fit:Exp 2 0.08 0.04 1.33 0.27
Residuals| 51 1.52 0.03

evaluate the learning effectpystemand of the different subjects’
Experience The analysis was performed by using a two-way Anal-
ysis of Variance (ANOVA).

Exp

--- 1l (PhD)
| (master)
— Il (undergrad. Pairs)

median of Complete
0.70
!

0.55
|

no

Fit

Figure 4: Interaction plot of main factor with Subjects Experi-
ence.

On the overall data set, we found no significant effect ofSfistem
on the fraction of test cases passed (p-value=0.97) norrday i
action with the main factor (p-value=0.88). Similarly, nsignifi-
cant results were obtained analyzing data for each expstisepa-
rately. Also theLabfactor did not produce any significant effect on
the fraction of test cases passed (p-value=0.13) nor aesaiction
with the main factor (p-value=0.58). Results were confirrapéd-
lyzing each experiment separately. The third factor we iciemed
was the type of subjects for the different experimebted. In this
case, as shown in Table 8, the effect is significant (p-vau@s9).

In other words, subjects with different experience gainiferent
benefits from the use of Fit tables. Figure 4 shows the intierac
plot of theExperiencdactor with the main factor. Such an interac-
tion is not overall statistically significant (p-value=0)2although

Table 9: Spearman correlation between Time and fraction of
test cases passed.

Experiment| Correlation| p-value
Exp | -0.064 0.76
Exp Il 0.17 0.53
Exp Il 0.018 0.97

we can find a significant difference betweerp | andExp Il that
is also graphically visible (Tukey multiple comparisonsneéans
p-value=0.03). By observing the interaction plot we obedrthat
the potential benefits gained with the presence of Fit tedrlesep-

resented by the slope of the segments: the slope — and thus th

benefit gained with Fit — is higher for high experience sutgec
(master students and above all PhD students).

Then, we analyzed whether the type of maintenance taskrpestb
in the four different tasks assigned to subjects (correcthain-
tenance or evolution) had an effect on the code correctnean o
interaction with the main factor. To test the presence ohsam
effect, we performed a two-way ANOVA biethod & Mainte-

nance Typeln all the three experiments, a significant influence of

the type of maintenance task was found (p-valués6 - 10~* for
Exp |, 0.00023 foExp II, and7.744-10~'2 for Exp lIl). Instead, no
interaction was found with the main factor (p-value=0.78 Exp
1, 0.36 forExp Il, and 0.92 forExp Ill). In other words, although
subjects were able to better perform (in terms of resultodeacor-
rectness) corrective maintenance tasks than evolutits this did
not depend on the main factor treatment (availablility at&bles).

To analyze the effect of Time, a two-way ANOVA of Time by
Method & Systemand byMethod & Labwas performed for the
three experiments. No significant effect of tBgstenfactor was
found (p-value=0.21 foExp |, 0.064 forExp Il and 0.48 forExp
111 on the Time, nor any significant interaction of these factwith
the Method(p-value=0.66 folExp |, 1.00 forExp Il and 0.068 for
Exp 111). Similarly, no significant effect of theab factor was found
(p-value=0.35 foiExp I, 0.76 forExp Il and 0.49 forExp IlI) nor
any significant interaction with thMethod (p-value=0.4 forExp

I, 0.65 forExp Il and 0.068 foiExp IIl). An analysis of the over-
all data set was not possible in this case since times fos (f&ip
111 cannot be compared with times of singles (other experig)ent
Results indicate that (i) the two different systems did rofuire a
significantly different time to be maintained; and, (ii) taevas no
learning between the two laboratories.

The effect of maintenance task type (corrective maintemanevo-
lution) on the time needed to perform the task was signififant
Exp | (p-value=0.01) andExp Il (p-value=.096 - 107%), while
marginally significant forExp Il (p-value=0.06). No interaction
was found with the main factor (p-value=0.77 fxp |, 0.65 for
Exp Il, and 0.77 forExp IIl). While subjects spent more time for
evolution tasks, there was no significant difference whértables
were available or not.

Finally, we analyzed whether there was any correlation eetw
the two dependent variables, i.e., the time spent and tltidra

4.4 Survey Questionnaire Results

This section analyzes results from the survey questioanaive
considered the answers from the questionnaire in agreewignt
the question sentence when the median was less than 3 (bsing t
one-tailed Mann-Whitney test). Comparison among the three
periments was done using the Kruskal-Wallis test, whilfedinces
between results of different treatments was tested using-ddiled
Mann-Whitney test. Boxplots of survey questionnaire rsstdr

the three experiments are presented in Figure 5.

Besides the treatment received, for all the three expetsnsub-
jects felt to have had enough time to complete the t8xK,(and
felt the laboratory objective$)2) and the system description33)
clear. The change requiremen€4) were clear forExp | (gradu-

Ate students) (median=2) abckp 11l (pairs of undergraduate stu-

dents) (median=1) but not f&xp Il (PhD students) (median=2.5).
The difference among the three experiments was signifigant (
value<0.01).

In all three experiments subjects found the code easy to(f@ad
with no particular difference depending on the presenceitaaF
bles. Also, in all cases subjects partially agreed not teetead
difficulties in implementing the change®8), although forExp I
subjects with Fit seemed to perceive more difficulty (med&n
than subjects without Fit (median=2). In this case, diftieslwere
higher for subjects oExp Ill (median=3), although the differences
from agreements of the other two experiments were not sogmifi
(p-value=0.6 folExp land 0.5 forExp II).

Q7 clearly indicated how subjects &xp | and Exp Il benefited
more of the use of Fit than subjects Bkp Il (p=0.04). In fact,
despite the availability of Fit tables, subjectsfp Il required

a median number of executions between 7 and 10 to implement
the change. Such a number was between 5 and 7 for subjects of
Exp Il when Fit was not available, and decreased to 1 when Fit
was available. FoExp | the median number was between 5 and
7 without Fit tables and between 2 and 4 with Fit tables. Ireoth
words, forExp landExp I, Fit test case execution helped to reduce
the number of manual test necessary before releasing tingetia
software.

QuestionsQ8-Q11 were only asked to subjects having Fit tables
available. Subjects for all three experiments felt Fit éshliseful
for defect correction@8 and Q9). Subjects ofExp | andExp I
indicated Fit tables as useful for regression testi@gQd) and for
comprehension@11) (median=2 in all cases), while subjects of
Exp Il were undecided (median=3 for both questions).

5. DISCUSSION

By looking at the experimental results, two notable facterya.
First, experienced developers (graduate students and ®RdBrgs

in particular) receive much more benefits from Fit tablesthavice
developers (undergraduate students). When Fit tablesvaik a
able, PhD students are able to outperform all other subjedttise
master students are able to perform as well as pairs of uraterg
uate students. This can be due to the expertise and level -of ma
turity that may be needed to understand the change requitsme
“by example” and to assess the correctness of the maintail
through Fit table execution. Graduate students have prshjio

of test cases passed. This is because the code correctndds co taken classes on software engineering and have followezhadd

depend on the time subjects spent to perform the task, rither

courses on testing. PhD students even had the opportunép-of

on the main factor treatments. As shown in Table 9, the Sparm plying testing in practice when working on research prgjgthis

(non-parametric) correlation is low and not significant.

allows them to exploit the availability of test cases (Fitlés) dur-

Value

Value

Value

3.54

3.04 * B *

2.5

T~

2.0

[

1.0

2
1 zﬁ]z 5 24U I]]Z 2
1.54

Ft 28 28 28 28 28 28
S5 S5 £5 £5 €5 €5
Queston = N ® T » © N o o

N} w
1= 1}
&
|
NN
 — —]
&
w
G
w

no
yes
no
yes
no
yes

Fit
Question — ~ o0 <~ n 0 ~ ©)

yes-|
yes-|
yes-|
yes-|
yes-|
yes-|

(b) Exp Il

g

yes{ —=—n
ORI e—
{
: R
[E—T

e

yes{ =y

no-

Fit
Question - ~ ™ < n o ~ © o

no
yes-
no
yes
no
yes
no
yes+
no
yes
no
yes
no

(c) Exp 1l

Figure 5: Survey questionnaire results.

ing the maintenance task. Undergraduate students only kasig
testing principles and techniques, and had less oppoytdniting
their career to be testers. They felt more comfortable witipéct-
ing the code and performingd hoctesting, as visible from the
larger number of executions needed before releasing thegeda
code (questiorQ7 of the survey questionnaire). Overall, there is
no significant increase of time needed to perform the taslenwh
Fit is available, and also the measured effect size is shhis in-
dicates that, provided a previous training, the overheaiddnced
by understanding and executing Fit tables is limited and edsin-
terbalanced by the need fad hoctesting, and inspections when
Fit tables are not available.

The second result that emerges from the experiment is thenw
working in pairs, the benefit introduced by Fit tables is el
Working in pairs make requirement understanding easiecédee-
ducing the requirement clarification role played by Fit ézblBen-
efits of Fit tables are inferior if developers can compreheglire-
ments in pairs. Feedback provided by subjects (ques@zh€10
andQ11) were in agreements with quantitative results obtained in
the experiment. The pair cooperation helps to better utatetse-
quirements and, above all, to improve the code correctnéss w
performing the maintenance task. This because while onecub
codes, the other inspects the code under development avid¢so
feedbacks whenever necessary. Such an inspection actsbtisran
native to Fit table execution, or at least reduces its cdipatn re-
veal failures since many programming errors are alreadyected
during the development. It looks like the observer in the =i
mentally simulating the execution of the code being writteder
relevant scenarios, hence reducing the role of Fit tableugian.
However, further experiments are needed to confirm thisrimdi
since pairs Exp 1ll) were less experienced than subjects for other
experiments. Because of that, such a result can just be die to
different experience level.

5.1 Threats to validity

This section discusses the threats to validity [16] that afiect
our results:construct internal, conclusion and externalvalidity
threats.

Construct validitythreats concern the relationship between theory
and observation. In particular, this threat is related tw bode cor-
rectness after maintenance interventions and time wersunsi

The code correctness was assessed in a objective way byt-execu
ing a JUnit functional test suite and measuring the pergentd

test cases passed and failed. To avoid bias, the JUnit ties su
were developed independently from the acceptance tesssiihe
developed test suites are representative of functiongstites de-
veloped according to the category partition technique. 8pgia
code coverage tool, we also verified that the developed ti&ss
were able to ensure a high statement coverage (between 8% an
100%) for the methods impacted by the changes. Of courser oth
test suites could possibly produce different results. Tivas mea-
sured by means of proper time sheets and validated quaditati

by researchers who were present during the experimentoddtin

this may not be very accurate, this is a widely adopted wayesH-m
suring performance (monitoring is often not possible fgalerea-
sons), and teaching assistants checked that the forms oreeetty
filled.

Internal validity threats concerns external factors that may affect
an independent variable. A proper analysis —i.e., two-wii{OWA
—was performed to analyze the effect of these factors. Agho

it was impossible to properly discern the effect of pairgrfrthat

of experience: to achieve it we would need a specific experime
that will be part of our future work. Othénternal validity threats
can be due to the learning effect experienced by subjeciecket
Labs Such an effect is mitigated by the chosen experimental de-
sign: subjects worked, over the twabs on different systems with
different levels of the main factor (Fit vs. Text). Also, thab ef-
fect was measured with a two-way ANOVA and was found not to
be significant. Also (see Table 4), the chosen design corssale
combinations of systems and main factor treatments (iigtalbles
available or not). This mitigates the impact due to the faat &in
individual/pair used one treatment before the other. Tadsocial
threats due to evaluation apprehension, students werevaht-e
ated on their performance. Although subjects particiggtineach
experiments had a similar background, ability was not eitpfi
assessed before the experiment. Finally, subjects wernase of
the experimental hypotheses.

Conclusion validityconcerns the relationship between the treat-
ment and the outcome. Proper tests were performed to italiist
reject the null hypotheses. The small sample size (ove@adub-
jects, however the analyses were applied to 32 points, dorce
Exp Il subjects worked in pairs) could have limited the capabil-
ity of statistical tests to reveal any effect. However, @titn was
paid to not violate assumptions made by statistical tests\vahen-
ever conditions necessary to use parametric statisticsatitiold,
we used non-parametric tests, in particular the Mann-Vékitest
for unpaired analyses, the Wilcoxon test for paired analysal
the Tukey test for multiple comparisons. The measure chtsen
evaluate the code correctness, i.e., the fraction of J@sitdases
passed, allowed to evaluate the maintenance tasks exdmustd-
dents in an objective manner, avoiding to give subjectiv@es:
Survey questionnaires, mainly intended to get qualitatigeghts,
were designed using standard ways and scales [10].

undergraduate.

Melnik et al. [7] investigated on the use of Fit user acceptance
tests for specifying functional requirements. They coneld@x-
periments at the University of Calgary and at the Southetre/h
Institute of Technology. Results showed that the use ofdhbites
and the possibility to execute them improve the comprebensi
requirements. In this experiment, students worked on thein
(off-line) for two weeks.

Also, Melnik et al. [6] investigated whether acceptance tests can
be authored effectively by customers of agile projects. diithors
carried out an experiment, involving 40 students as subjedio
were enrolled in business school for graduate students amd ¢
puter science graduate and undergraduate students. Téwénaspt

did not support the hypothesis that the quality of execetabkep-
tance tests produced by the customer team will be stronglpas-
itively correlated with the quality of the implementatioroduced

by the development team. However, results show that custome
can specify functional requirements clearly. The mainedéhces
between [6, 7] and our work are the way subjects worked {oé-|
vs. on-line), the kind of task (development vs. maintengraed
the measurement instrument (questionnaires vs. codectoess
measured through JUnit functional test suites).

In Denget al’s study [3] a survey on Acceptance Test Driven De-
velopment has been conducted with 33 professionals by ragadi
questionnaire. The study concludes that the time frame dmtw
the definition of an acceptance test and its first successis s
much longer than that of unit testing. The average time fréane
acceptance testing is more than 4 hours, i.e., more tharaukl§.
Starting from this result the authors built a new tool, narféd
Clipse, able to distinguish the two possible “failing cdse3olor
red indicated a regression failure (i.e., failure as a tesu re-
cent change losing previously working functionality) vehdrange

External validityconcerns the generalization of the findings. Threats suggest that there is an unimplemented feature (not adilémn

belonging to this category can be related to (i) the simpla 3gs-
tems chosen and (ii) to the use of students as experimeijaicss.
The selected subjects represent a population of studest#isplly
trained on software engineering tasks. Also, all subjeutslved
in Exp | (graduate students) aritkp 11l (PhD students) either had
some professional experiences or worked on industriabptejur-
ing their thesis. This makes these students comparable tstiry
junior developers. Nevertheless, the working pressurefandver-
all environment in industry is different, thus replicatitiee study
in industry is highly desirable. Further studies with larggstems
and more experienced developers are needed to confirm aasbnt
the obtained results. Finally, our study focused on the @ig&tp
although other acceptance testing frameworks (e.qg., [5?]1®an
also be used.

6. RELATED WORK

Although there are papers [1, 12] and books [9] describirmppc
tance testing with Fittables, only a few works report engairstud-
ies about Fit.

Readet al.[12] found that experience can affect the understand-
ability and the capability of defining the functional rearirents
for writing acceptance test cases. In particular, autlgoeiocep-
tance tests is more difficult than reading and understandbimce
writing acceptance tests requires practice and experi¢nesup-
port of a tool is not enough. The need for experience is reftect
in our results, where graduate students benefited more ofidit

initial self-evaluation shows that the distinction betwelee failure
states and the use of FitClipse is useful.

Riccaet al. [13] report a controlled experiment with master stu-
dents aimed at assessing the impact of Fit tables on theyctsdri
requirements. The main difference with the present studidas

in [13] students could only use the Fit tables to better gthspe-
quirements while in our case, students had the Fit tablestand
Fixtures with the possibility to execute them. The resuliamed
indicate that Fit helps in the understanding of the requénets but
involves additional effort (even if not in significant way).

In a companion paper [14] some of the authors of the presgatrpa
reported some partial analyses and some results from treriexp
ment conducted in Trento with master studefisy(). The second
and third experimentExp Il, Exp Ill) are presented here for the
first time.

7. CONCLUSIONS AND FUTURE WORK
This paper reported a series of experiments aimed at asgahsi
benefits obtained in performing maintenance tasks withuppart
of Fit tables. Results indicated that (i) the maintainedecisdnore
correct when Fit is available; and (ii) the overhead indulcgdhe
presence of Fit— measured in terms of time — is negligible.

In addition, interesting effects of two co-factors, expare of sub-
jects and work organization, i.e., working in pairs or agka —

were found that: methods - XP/Agile Universe 20Qdages 60-72, August

2004.
[8] B. Meyer. On formalism in specificatiofEEE Software

1. the benefits of Fit were higher for subjects with a higher ex January 1985

perience, such as PhD students. They were able to improve

the correctness of the maintained code of 44% on average; [9] R. Mugridge and W. Cunningharfit for Developing

Software: Framework for Integrated TesBrentice Hall,

and 2005.
. working in pairs seemed to compensate the benefits of Fit in [10] A. N. OppenheimQuestionnaire Design, Interviewing and
terms of correctness although it may reduce the time redjuire Attitude MeasuremenPinter, London, 1992.

to perform the task. [11] T. Ostrand and M. Balcer. The category-partition metfar
specifying and generating functional tes€sammunications
of the Association for Computing MachineB4(6), June

Work-in-progress is devoted to better analyze, with speexper- 1988.

iments, the effect of work organization (e.g., working irrgaon [12] K. Read, G. Melnik, and F. Maurer. Examining usage patte
the usefulness of Fit tables. In addition, it would be worftinees- of the fit acceptance testing framework.Rroc. 6th

tigating whether the progressive increase in benefits werobd International Conference on eXtreme Programming and

in our experiments will keep for professional developerastl_but Agile Processes in Software Engineering (XP20p&yes

not least, future empirical studies will aim at analyzingatiter the Lecture Notes in Computer Science, Vol. 3556, Springer
additional effort and cost — encountered during the requénet Verlag: 127-136 2005, June 18-23 2005.

elicitation phase — due to the development of Fit tablesl el [13] F. Ricca, M. Torchiano, M. Ceccato, and P. Tonella. Tk

paid back by a higher code correctness. In other words, ihen t
one hand the present experimentation has shown the benéfits i
duced by Fit tables, the adoption of such a technique in theae

tests: an empirical assessment of the role of fit acceptance
tests in clarifying requirements. International Workshop
on Principles of Software Evolution (IWPSE 200Fages

development life-cycle must be considered taking into antthe 51-58. ACM Press, September 2007
costs it will introduce.) ' :

[14] F. Ricca, M. Torchiano, M. Di Penta, M. Ceccato, and
P. Tonella. On the use of executable fit tables to support

8. ACKNOWLEDGMENTS maintenance and evolution tasks.Third International
Massimiliano Di Penta and Marco Torchiano were partiallp-su ERCIM Symposium on Software Evolution (20&9p 2007
ported by the project METAMORPHOS (MEthods and Tools for (to appear).
migrAting software systeMs towards web and service Oréafe- [15] J. Sauve, O. Abath Neto, and W. Cirne. EasyAccept: attool
chitectures: exPerimental evaluation, usability, andHte@logy easily create, run, and drive development with automated
tranSfer), funded by MiUR (Ministero dell’Universita e teRi- acceptance tests. Fh'oceedings of 2006 international
cerca) under grant PRIN2006-2006098097. workshop on Automation of software tgsages 111 — 117,
New York, NY, USA, 2006. ACM Press.
9. REFERENCES [16] C.Wohlin, P. Runeson, M. Host, M. Ohlsson, B. Regnell,
[1] J. Aarniala. Acceptance testing. Whitepaper. and A. WesslérExperimentation in Software Engineering -
www.cs.helsinki.fi/u/jaarnial/jaarnial-testing.pdDctober 30 An Introduction Kluwer Academic Publishers, 2000.
2006. [17] R. Young.Effective Requirements Practickddison-Wesley,
[2] J. CohenStatistical power analysis for the behavioral Boston, MA, 2001.

(3]

[4]

[5]

(6]

[7]

sciences (2nd ed.lawrence Earlbaum Associates,
Hillsdale, NJ, 1988.

C. Deng, P. Wilson, and F. Maurer. Fitclipse: A fit-based
eclipse plug-in for executable acceptance test driven
development. IfiProceedings of the 8th International
Conference on Agile Processes in Software Engineering and
eXtreme Programming (XP 2003pringer, 2007.

N. Juristo and A. MorenaoBasics of Software Engineering
ExperimentationKluwer Academic Publishers, Englewood
Cliffs, NJ, 2001.

K. Leung and W. Yeung. Generating user acceptance test
plans from test cases. Proceedings of the 31st Annual
International Computer Software and Applications
Conference - Vol. 2- (COMPSAC 200ppges 737—-742, Los
Alamitos, CA, USA, 2007. IEEE Computer Society.

G. Melnik, F. Maurer, and M. Chiasson. Executable
acceptance tests for communicating business requirements
customer requirements. Proceedings of AGILE 2006
Conference (AGILE2006pages 35-46, Los Alamitos, CA,
USA, 2006. IEEE Computer Society.

G. Melnik, K. Read, and F. Maurer. Suitability of fit user
acceptance tests for specifying functional requirements:
Developer perspective. Bxtreme programming and agile

