The Experimental Process

(01OPJIU) Empirical Methods in Software Engineering

http://softeng.polito.it/EMSE/

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. To view a copy of this license, visit <u>http://creativecommons.org/licenses/by-nc-nd/4.0/</u>. You are free: to copy, distribute, display, and perform the work

Under the following conditions:

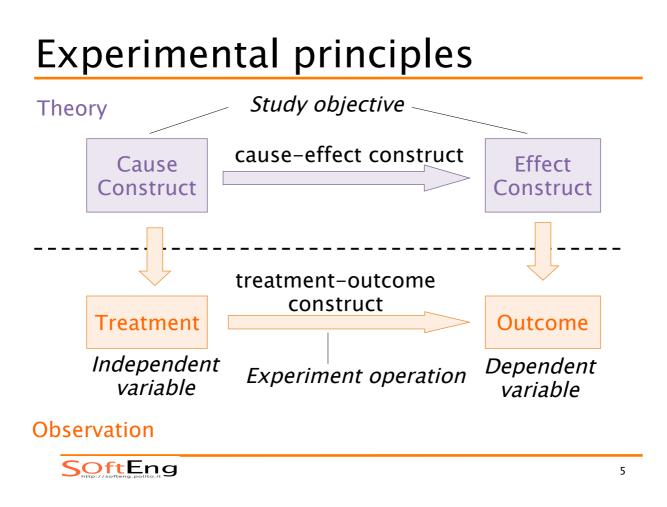
Attribution. You must attribute the work in the manner specified by the author or licensor.

Non-commercial. You may not use this work for commercial purposes.

No Derivative Works. You may not alter, transform, or build upon this work.

- For any reuse or distribution, you must make clear to others the license terms of this work.
- Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.


THE EXPERIMENTAL PROCESS

	Wohlin et. al. 2000
SoftEng	3

Empirical method

- From observation find an explanation
- Formalize it into a theory
- Formulate an hypothesis
- Test it with a study

Glossary

- Construct (conceptual)
 - Broad concepts or topics of study
 - Abstract
 - Not directly observable
 - May be complex (have multiple parts)
 - E.g. quality, productivity, skill
- Variable (Operational Construct), Measure, Metric
 - Precise definition
 - Procedure to measure

Glossary

- Dependent (output, response) variable:
 - Quantities observed in the study
 - E.g. LOC/day
- Independente (input) variable:
 - Quantities controlled and monitored
 - E.g. years of experience, development method

SoftEng

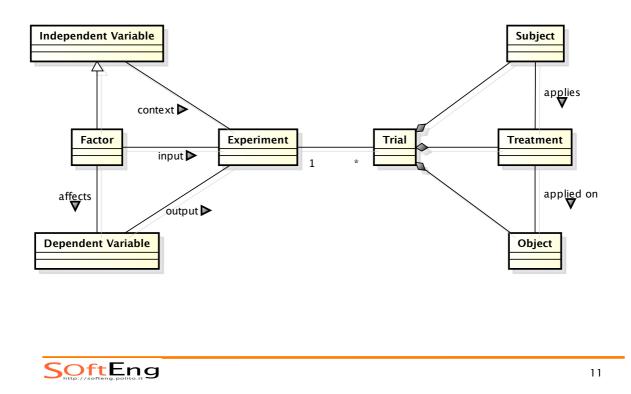
Glossary

- Factor
 - An input variable whose effect on the output we want to study
 - E.g. development method
- Treatment (Level)
 - A particular value of a factor
 - E.g. upfront design vs. incremental design

Glossary

Subject performs a task with an object

- Experimental unit of observation
- The treatment may be applied to:
 - Task
 - E.g. Develop using a given *methodology*
 - Object
 - E.g. Requirement with a given *notation*
 - Subject
 - E.g. Developer with a particular *skill/training*

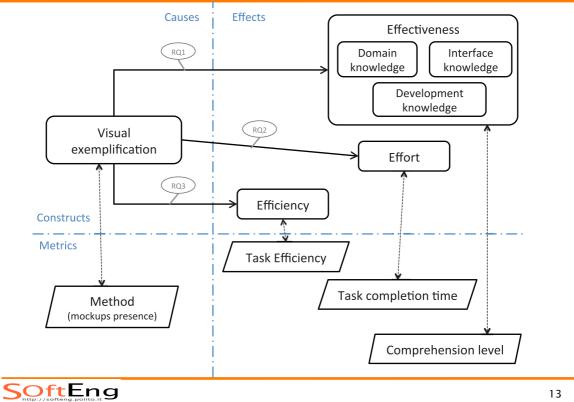

SoftEng

Glossary

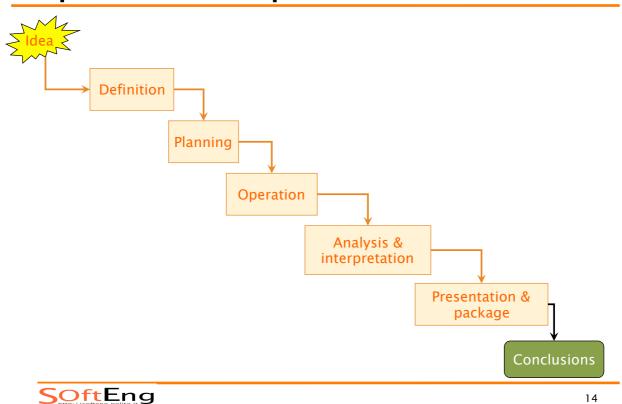
- Trial (experimental unit)
 - A combination of (Subject, Task, Object, Treatment)
 - Subject + Treatment
 - Task and Object counted as part of the treatment
 - Object: Software artifact
- An experiment typically involves several trials

SoftEng

Experimental Process Concepts



A running example


Ricca et al., Assessing the Effect of Screen Mockups on the Comprehension of Functional Requirements. ACM Transactions on Software Engineering and Methodology, 24(1), 38pp, 2014

http://doi.acm.org/10.1145/2629457

Conceptual model

Experimental process

Experimental process steps

- Definition
 - Goals and objectives of the study
- Planning
 - Define context
 - Formulate hypotheses
 - Identify input and output variables
 - Design the study
 - Analyze threats to validity

SoftEng

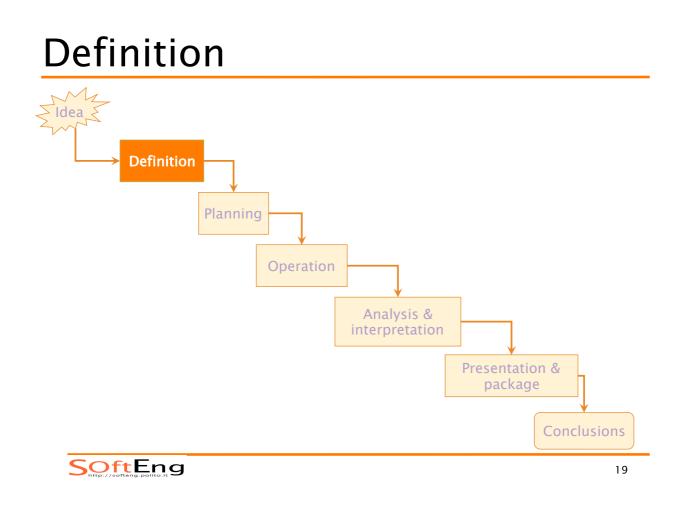
Experimental process steps

- Operation
 - Preaparation
 - Execution
 - Data validation
- Analysis and interpretation
 - Data understanding

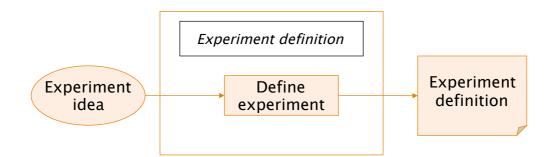
 Descriptive statistics, EDA
 - Possible data reduction
 - Hypothesis testing
 - Results interpretation

SoftEng

16


Experimental process steps

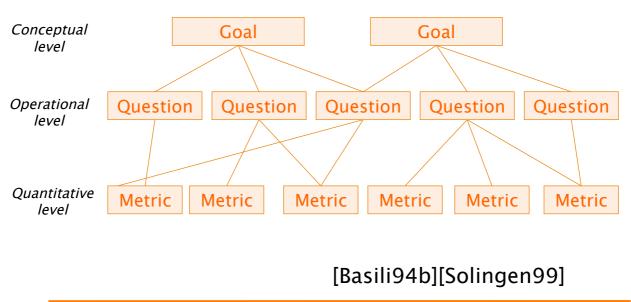
- Presentation and package
 - Document results
 - Prepare lab-package to enable replications
 - Sum up lessons learned


SoftEng

17

EXPERIMENT DEFINITION

Experiment definition: overview


The definition determines the foundation of the experiment (*what* and *why*).

At this level, hypotheses sohuld be clear but not formally described

SoftEng.

Goal-Question-Metric (GQM)

Research approach

SoftEng

Goal definition template

Analyze	Objects(s) of study
for the purpose of	Purpose
with respect to their	Quality focus
from the point of view of	Perspective
in the context of	Context

Goal definition examples

Object of		Quality		
study	Purpose	focus	Perspective	Context
Product	Characterize	Effectiveness	Developer	Subjects
Process	Monitor	Cost	Modifier	Objects
Model	Evaluate	Reliability	Maintainer	
Metric	Predict	Maintainability	Project	
Theory	Control	Portability	manager	
	Change	Comprehension	Corporate manager	
			Customer	
			User	
			Researcher	

SoftEng

23

Goal definition example

"Analyze the PBR and checklist techniques for the purpose of evaluation with respect to effectiveness and efficiency from the point of view of the researcher in the context of M.Sc. And Ph.D. students reading requirements documents"

Regnell et al. Are the Perspectives Really Different?

Goal definition example

Analyze	Objects(s) of study PBR and checklist techniques
for the purpose of	Purpose Evaluation (and comparison)
with respect to their	Quality focus effectiveness and efficiency
from the point of view of	Perspective the researcher
in the context of	Context M.Sc. and Ph.D. students reading requirements docs
SoftEng	25

Goal definition example

analyze the use of stereotyped UML diagrams, with the purpose of evaluating their usefulness in Web application comprehension for different categories of users. The quality focus is to ensure high comprehensibility, while the perspective is both of Researchers, evaluating how effective are the stereotyped diagrams during maintenance for different categories of users, and of Project managers, evaluating the possibility of adopting the Web modeling technique WAE in her organization, depending on the skills of the involved developers. The context of the experiment consists of two Web applications (objects) and four groups of subjects: research associates, students from an undergraduate course, and students from two graduate courses.

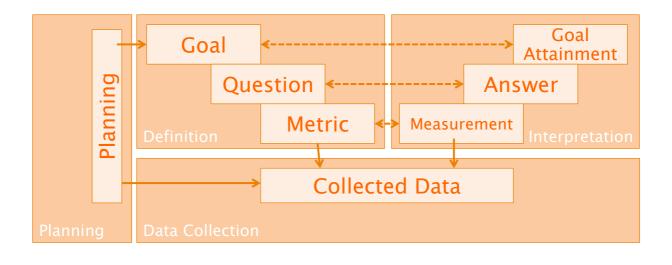
•Ricca et al. How Developers' Experience and Ability Influence Web Application Comprehension Tasks Supported by UML Stereotypes: A Series of Four Experiments

Goal definition example

Analyze	Objects(s) of study stereotyped UML diagrams
for the purpose of	Purpose evaluating their usefulness
with respect to their	Quality focus comprehension
from the point of view of	Perspective researcher and project manager
in the context of \mathbf{r}	Context research associates, undergraduate students graduate students

Goal definition example

 Analyze the use of screen mockups for the purpose of understanding their utility with respect to the effectiveness in comprehending requirements and the effort and the efficiency in performing comprehension tasks from the point of view of the requirements analyst, developer, and customer in the context of students reading two requirements specification documents for desktop applications.


Goal definition example

Analyze	Objects(s) of study the use of screen mockups
for the purpose of	Purpose understanding their utility
with respect to	Quality focus effectiveness in comprehending requirements and the effort and the efficiency in performing comprehension tasks
from the point of view	Perspective the requirements analyst, developer, and customer
in the context of	Context students reading requirements specification for desktop applications

Example questions

- RQ1. Does the requirements comprehension effectiveness vary when use cases are provided in conjunction with screen mockups?
- RQ2. Does the *effort* required to complete a comprehension task vary when use cases are provided in conjunction with screen mockups?
- RQ3. Does the *efficiency* in performing a comprehension task vary when use cases are provided in conjunction with screen mockups?

GQM in perspective

SoftEng

Questions

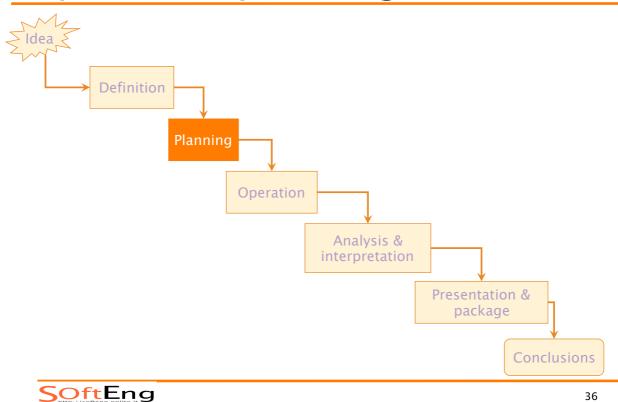
- Refinement of goals to a more operational level
 - By answering the question one should be able to conclude whether the goals has been achieved
- Expected answers can be formulated as (high level) hypotheses
- Questions may focus on different aspects of the goal

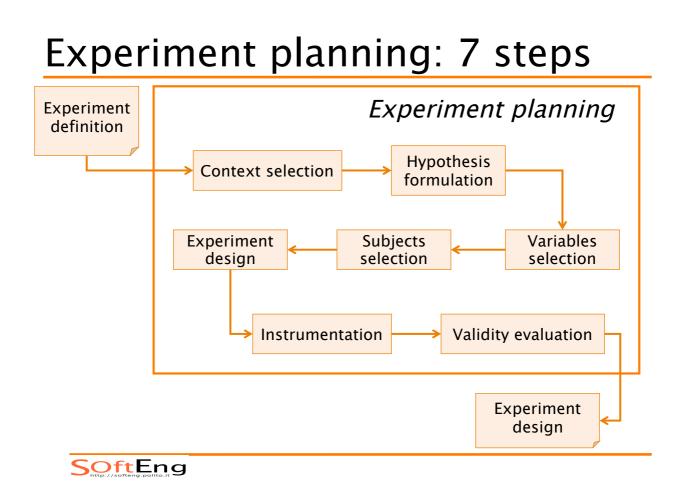
Example – Goal

- Goal: reliability
 - Analyze the product and process
 - For the purpose of characterizing
 - With respect to reliability and its causes
 - Form the point of view of the software development team
 - In the context of project A

SoftEng

Example – Questions


- Product definition
 - Does the sw adhere to coding standards
 - What is the complexity of sw?
- Quality
 - What is the distribution of failures?
 - What is the distribution of faults?
 - What was the distribution of failure handling effort?
 - What is the relationship between code reviews and reliability?


EXPERIMENT PLANNING

SoftEng.

35

Experiment planning

Context selection

- The content of the experiment can be characterized according to 4 dimensions:
 - Offline vs. Online
 - Student vs. Professional
 - Toy vs. Real
 - Specific vs. General

Hypothesis formulation

- Two hypotheses must be formalized
 - Null hypothesis H₀
 - no real underlying trends or patterns in the experiment setting
 - Alternative hypothesis H_a
 - There exists real underlying trends or patterns in the experiment setting
 - If we investigate the existence of a pattern, the null hypothesis must state that no patterns exist

SoftEng

Scientific method (reminder)

- Conjecture (P)
 - Administration of treatment has influence on some feature
- Consequence (Q)
 - We observe a difference in terms of some feature

If P, then Q

Falsification (*modus tollens*)

- We aim at detecting ~Q
 - The opposite of the consequence
 - We test the null hypothesis
 - If verified we can conclude the conjecture is false
- Aiming at verifying Q: is wrong
 - Provides no insight on the conjecture
 - Affirming the consequent fallacy

SoftEng

Example

- Question
 - Do code reviews affect quality?
- Conjecture (P)
 - Code reviews reduce defects
- Hypothesis alternative (Q)
 - (When code reviews are applied) we observe fewer defects than when they are not applied
- Hypothesis null (~Q)
 - We observe no difference in terms of defects when code reviews are applied or not

Example

- Outcome of the experiment
 - We confirm the null hypothesis (~Q)
 - We conclude that code reviews do not reduce defects (~P)
 - -~Q => ~P
 - The conjecture has been falsified
 - We reject the null hypothesis
 - We are more confident that it is likely that code reviews reduce defects (P)
 - Q 🗾 P
 - The conjecture has been corroborated

SoftEng

Hypotheses example

- H_{c0}. The presence of screen mockups *does* not significantly improve the comprehension level of functional requirements.
- H_{t0} . The presence of screen mockups *does not significantly improve* the time to accomplish a comprehension task.
- H_{e0} . The presence of screen mockups *does not significantly affect* the efficiency of the comprehension task.

SoftEng

Variable selection

- Independent variables
 - Variables that we can control

 Treatment
 - Variables that we can monitor
 - Context and domain
 - Possible confounding factors
- Dependent variables
 - Allow measure the effect of treatments
 - Sometimes they cannot be measured directly
 - Use of proxies

SoftEng

Example variables

Variable	Type	Description	Scale
Method	Indep.	whether requirements are augmented with screen mockups	$\begin{array}{l} \text{Nominal} \\ \in \{S, T\} \end{array}$
Application	Indep.	experimental object used in task	Nominal $\in \{AMICO, EasyCoin\}$
Lab	Indep.	order of the experiment unit within the experiment for the participant	$\begin{array}{l} \text{Ordinal} \\ \in \{1, 2\} \end{array}$
Experiment	Indep.	participants' profiles and experiment	Nominal $\in \{UniBas1, UniGe, PoliTo, UniBas2\}$
Comprehension level	Dep.	comprehension achieved by a participant on the functional requirements	$\begin{array}{l} \text{Ratio} \\ \in [0, 1] \end{array}$
Task completion time	Dep.	time spent by a participant to complete a comprehension task	Interval $\in (0, \infty)$
Task efficiency	Dep.	task time efficiency	Ratio ∈ [0, 600]
Source	Dep.	(main) source of information used to perform comprehension task	Nominal $\in \{G, K, UC, UCD, S\}$

Subjects selection

- Subjects are selected from a population:
 - Probability sampling

 Simple random, systematic, stratified
 - Non probability sampling
 - Convenience, quota
- Related to the level of generalization of the experiment

SoftEng

Subjects selection

- General principles
 - The larger the variation of the population is, the larger is the sample size needed
 - Analysis of data may influence choice of sample size: consider how to analyze data since design stage

Subjects Example

	UniBas1	UniGe	PoliTo	UniBas2
Date	Nov. 2009	Dec. 2009	Apr. 2010	Dec. 2010
Location	Univ. Basilicata	Univ. Genova	Poly. Torino	Univ. Basilicata
Degree	Computer Science	Computer Science	Computer Engineering	Math/Telecom
Level	Undergrad	Undergrad	Graduate	Graduate
Year	2nd	3rd	2nd	1st
Semester	1 st	1 st	2nd	1st
Number	33	51	24	31

SoftEng.

Design

- Experiment = series of trials
 - Number of factors and treatments determines design type and data analysis
- Memento:
 - Design and interpretation of results are closely related: the choice of design affects the analysis and vice versa

Design

- General design principles
 - Randomization
 - Blocking
 - Balancing

SoftEng

Randomization

- Used to
 - average the effects of a factor that may otherwise be present
 - select representative subjects for the population they come from
- Applies on
 - allocation of the objects
 - allocation of the subjects
 - order the tests are performed

Blocking

- Used to eliminate the undesired effect of a (confounding) factor we are not interested in
- Blocks are built separating by factor E.g.:
 - Block 1 : subjects with experience
 - Block 2 : subjects with no experience
- Blocks studied separately
- Effects between blocks not studied

SoftEng

Balancing

- Experiment design is balanced when treatments are assigned so that each treatment has equal number of subjects
 - Viceversa also subjects should have a burden as far as possible similar
 - Desirable because it both simplifies and strengthens the statistical analysis of data, but not necessary

Design types

- For each combination of number of factors and levels, different experiment design solutions
 - One factor with two treatments
 - One factor with more than two treatments
 - Two factors with two treatments
 - More than two factors each with two treatments

SoftEng

Fully randomized design

- The levels of the primary factor are randomly assigned to the experimental units.
- Balance
 - Same number of replications for each level

Fully randomized design

- Model
 - $Y_{ij} = \mu + T_i + error$
 - Where
 - i level of the main factor
 - j replication (subject) for that level
- Estimates
 - $\mu = \overline{Y}$ - the average of all the data
 - $T_i = \overline{Y}_i \overline{Y}$
- Hypothesis
 - H_0 : $T_i = T_j \Leftrightarrow \overline{Y}_i = \overline{Y}_j \Leftrightarrow \mu_i = \mu_j$

SoftEng

57

1 Factor, 2 Treatment Levels

- Most typical and simple case
 - One of the treatments can be "absence of"
 - Does the introduction of a technique affects some output variable?
- Example
 - Factor: design notation
 - Treatment 1: UML
 - Treatment 2: UML w/stereotypes

Randomized – 1 F, 2 T

- Each subject is randomly assigned to one of the two treatments
 - Balancing
 - Comparison of subjects in two groups
- Example of hypothesis
 - + H0: $\mu_1 = \mu_2$
 - + H1: $\mu_1 \neq \mu_2$, $\mu_1 < \mu_2$ or $\mu_1 > \mu_2$
 - Where:
 - μ_t = mean of dependent variable for subject that received treatment t

SoftEng

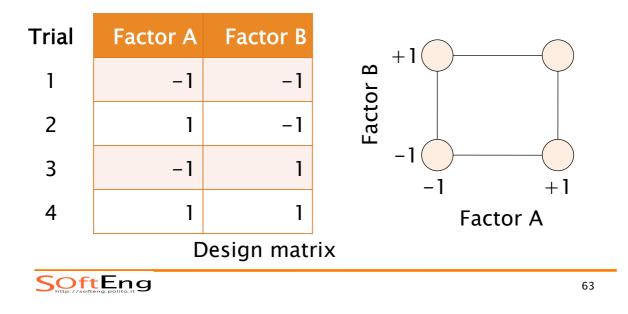
Randomized – 1 F, >2 T

- Each subject is randomly assigned to one of the treatments
 - Balancing
 - Comparison of subjects in groups
- Example of hypothesis
 - $H_0: \mu_1 = \mu_2 = ... = \mu_n$
 - H_1 : $\mu_i \neq \mu_j$ for at least one pair (i,j)

Randomized – 1 F, >2 T

Subjects	Treatment 1	Treatment 2	Treatment 3
1	X		
2		X	
3			×
4			X
5	X		
6		Х	
	\checkmark	\checkmark	\checkmark
	μ_1	μ_2	μ_3

SoftEng


Full factorial design L^k

- All possible combination of factor levels are observed
 - Number of factors: k
 - Number of levels per factor: L
 - Replications per trial: n
 - Sample size: n * L^k
- Balance
 - Same number of replications for each level

SoftEng

Full factorial design 2²

- Typically factors with L=2 levels 2^k
 - ◆ Levels +1, -1

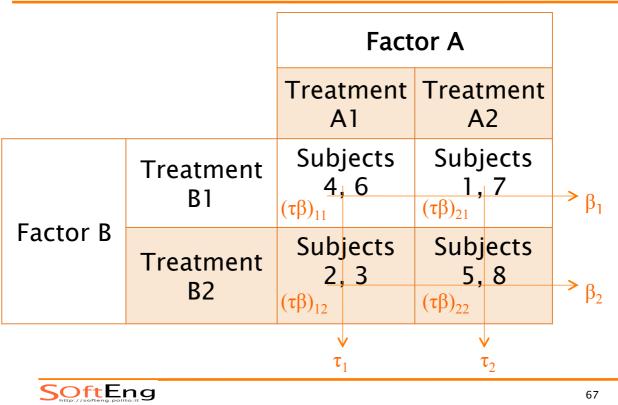
Interaction

- The effect of a combination of two factors together
- Example: coffee
- Factors:
 - Putting sugar
 - Stirring
- Outcome
 - Sweetness

	No stir	Stir
No Sugar	0	0
Sugar	0	1

Orthogonality

- The design matrix
 - has columns that are all pairwise orthogonal
 - all the columns sum to 0
- Eliminates correlation between the estimates of the main effects and interactions.
- Full factorial design are orthogonal


SOftEng

65

Factorial design

- Two factors (k=2)
 - τ_i The effect of level *i* of factor A
 - β_j The effect of level *j* of factor B
 - + $(\tau\beta)_{ij}$ The effect of the interaction between τ_i and β_j
- Example of hypotheses:
 - $H_0: \tau_1 = \tau_2$ $\beta_1 = \beta_2$ $(\tau\beta)_{ij} = 0$ for all i,j
 - H_1 : $\tau_1 \neq \tau_2$ $\beta_1 \neq \beta_2$ at leat one $(\tau\beta)_{ij}$

Factorial design

Factorial design - nested

2	factors,	two	stage	nested	design
---	----------	-----	-------	--------	--------

		Fact	or A	
	Treatment A1		Treatment A2	
example	Factor B		Factor B	
Treatment B1'		Treatment B2'	Treatment B1"	Treatment B2''
	Subject: 1,3	Subject: 6,2	Subject: 7,8	Subject: 5,4

Example of hypothesis
 -same as for 2*2 factorial design

Factorial design - 3 Factors

	Factor A	Factor B	Factor C	Subjects
example	A1	B1	C1	2,3
	A2	B1	C1	1,13
	A1	B2	C1	5,6
	A2	B2	C1	10,16
	A1	B1	C2	7,15
	A2	B1	C2	8,11
	A1	B2	C2	4,9
	A2	B2	C2	12,14

More than 2 factors, 2^k factorial design

- Example of hypothesis

-same as for 2*2 factorial design

SoftEng

Randomized blocked design

- A co-factor is used as a blocking factor if every level of the primary factor occurs the same number of times with each level of the co-factor.
 - Block what you can, randomize what you cannot.
- Characteristics
 - k : number of factors
 - L_i : levels of factor *i*
 - n : replications per cell
 - Sample size: $n * \prod L_i$

SoftEng

Randomized blocked design

- Model
 - $Y_{ijl} = \mu + T_i + B_j + error$
 - Where
 - i level of the main factor
 - j level of the blocking factor
 - I replication (subject) for that combination
- Estimates

•
$$\mu = \overline{Y}$$

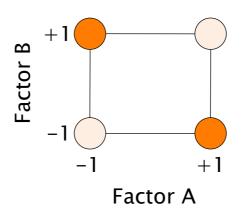
- the average of all the data

•
$$T_i = \overline{Y_i} - \overline{Y_i}$$

•
$$B_j = \overline{Y_j} - \overline{Y}$$

SoftEng.

Blocked factorial design 2^k


 Each co-factor level occurs the same number of times for each level of any main factor.

Trial	Factor A	Factor B	A*B	Block
1	-1	-1	1	B1
2	1	-1	-1	B2
3	-1	1	-1	B2
4	1	1	1	B1

Blocked factorial design

 Each co-factor level occurs the same number of times for each level of any main factor.

SoftEng

Latin square designs

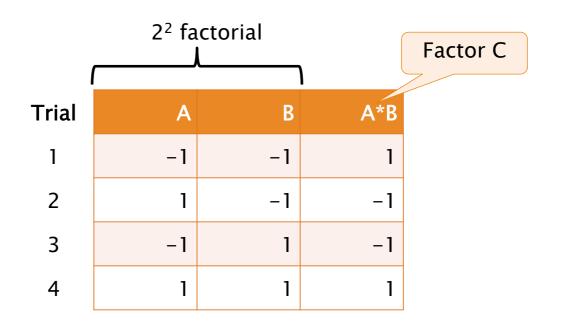
- One main factor and two co-factors
 - Allow experiments with a relatively small number of runs
 - Number of levels of each blocking variable must equal the number of levels of the treatment factor
 - No interactions between the blocking variables or between the treatment variable and the blocking variable.

3 x 3 Latin square

- One Main factor
 - Diagram: Informal, UML, UML w/stereotypes
- Two Co-factors:
 - Experience: Low, Medium, High
 - Model size: Small, Medium, Large
- Number of trials:
 - Fully blocked: 27 (= L_{diagram} * L_{Experience} * L_{Size})
 - Latin square: 9

SOftEng

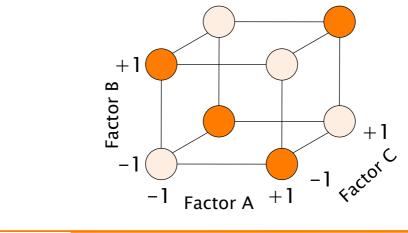
Experience Medium High Low UML w/ Small Informal UML stereotypes **Model Size** UML w/ Medium Informal UML stereotypes UML w/ Large Informal UML stereotypes SOftEng


3x3 Latin square

Fractional design L^{k-p}

- Only an adequately chosen fraction of the treatment combinations required for the complete factorial experiment is selected to be run.
- Number of trials
 - Full factorial: 2³ = 8
 - Fractional: $2^{3-1} = 2^2 = 4$

SoftEng


Fractional 2³⁻¹

SoftEng

Fractional 2³⁻¹

- Design generator (generating relation)
 - $C = A^*B \rightarrow dark corners$
 - C= $-A^*B \rightarrow \text{light corners}$

SoftEng

79

Fractional design

2³⁻¹ fractional

Example one-half fraction of the 2³⁻¹ factorial design

Factor A	Factor B	Factor C	Subjects
A1	B1	C2	2,3
A2	B1	C1	1,8
A1	B2	C1	5,6
A2	B2	C2	4,7

Example of hypothesis

-same as for 2*2 factorial design

Randomized – 1 F, 2 T

	Subjects	Treatment 1	Treatment 2
	1	×	
	2		Х
- example -	3		X
example	4	X	
	5		Х
	6	X	
		\checkmark	\checkmark
		μ_1	μ_2

SoftEng

Paired designs - 1 F, 2 T

- Each subject is assigned to both treatments in two distinct trials
 - Order must be randomized
 - Check for individual difference
- Example of hypothesis
 - H_0 : $\mu_d = 0$
 - + $H_1 : \, \mu_d \neq \, 0$, $\mu_d < \, 0 \, \, or \, \, \mu_d > \, 0$
 - Where
 - Defined y_{ij} as the measure of output variable for subject *j* when assigned to treatment *i*
 - μ_d is the mean of the individual differences $d_j^{}=y_{1j}^{}-y_{2j}^{}$

SoftEng

Paired – 1 F, 2 T

	Subjects	Treatment 1	Treatment 2
	1	trial 1	→ trial 2
_	2	trial 2	→ trial 1
example	3	trial 1	→ trial 2
	4	trial 1	→ trial 2
	5	trial 2 <	→ trial 1
	6	trial 2	→ trial 1
		Ň	
		μ	l _d

SoftEng

Complete blocked- 1 F, >2 T

- Each subject is assigned to each treatment
 - The order is randomized (and balanced)
 - Comparison of subjects in groups
- Example of hypothesis
 - $H_0: \mu_1 = \mu_2 = ... = \mu_n$
 - H_1 : $\mu_i \neq \mu_j$ for at least one pair (i,j)

Complete blocked – 1 F, >2 T

Subjects	Treatment 1	Treatment 2	Treatment 3
1	Tri <mark>a</mark> l 1	Tri <mark>a</mark> l 3	Trial 2
2	Trial 3	Tri <mark>al 1</mark>	Trial 2
3	Trial 2	Tri <mark>al</mark> 3	Trial 1
4	Trial 2	Tri <mark>a</mark> l 1	Trial 3
5	Trial 3	Tri <mark>al</mark> 2	Trial 1
6	Trial 1	Trial 2	Trial 3
	\checkmark	\checkmark	\checkmark
	μ_1	μ_2	μ_3

SoftEng

Example design

Table IV. Experiment Design. S is for requirements specification with screen mockups and T without them

	Group 1	Group 2	Group 3	Group 4
First laboratory run	S, EasyCoin	T, EasyCoin	T, AMICO	S, AMICO
Second laboratory run	T, AMICO	S, AMICO	S, EasyCoin	T, EasyCoin

Instrumentation

- Goal of instrumentation :
 - provide means for performing the experiment and monitor it, without affecting the control of the experiment
- Instruments are of three types
 - Objects
 - Guidelines
 - Measurement tools

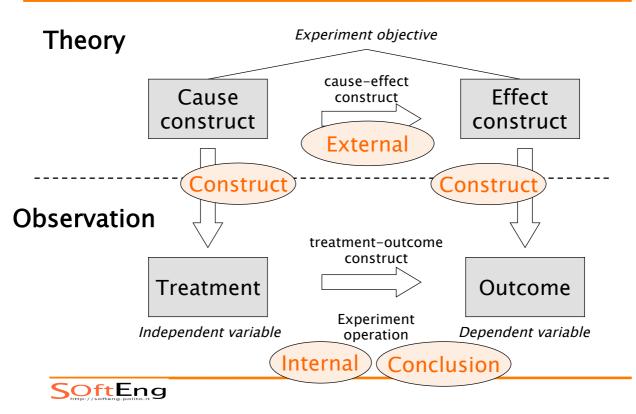
SoftEng

Example instrumentation

3.4. Procedure

The participants accomplished comprehension tasks using computers equipped with MS Word. An Internet connection was available, while performing the comprehension tasks. We provided the participants with the following material.

- ---The requirements specification documents in electronic format (MS Word) of Easy-Coin and AMICO. In particular, each document contained
 - (i) the system mission, namely, a textual description of both the functionality of the future system and the environment in which it will be deployed;
 - (ii) a UML use case diagram summarizing the use cases of the systems;
 - (iii) functional requirements expressed as use cases specified according to the chosen template. Depending on the experiment design, use cases were or were not complemented with screen mockups;
 - (iv) a glossary of the terms.
- -A paper copy of the comprehension questionnaires of EasyCoin and AMICO.
- -A paper copy of the postexperiment questionnaire shown in Table VI.
- —The training material, which included a set of instructional slides describing the template employed for the specification of the use cases, some examples not related with the experiment objects, and a set of slides describing the procedure to follow in the task execution.



Validity evaluation

- Adequate validity is obtained when results are valid for the population to which we would like to generalize
- Threats to validity are limitations to the adequate validity
- There are 4 types of threats:
 - Conclusion
 - Internal
 - Construct
 - External

SoftEng

Validity evaluation

Conclusion validity

- Conclusion validity
 - Threats concerning the statistical issues that can affect the ability to draw the correct conclusion about the relationship between treatments and outcome

SoftEng

Internal validity

- Internal validity
 - Threats concerning issues that lead to indicate a causal relationship, when there is none
 - The extent to which the behavior observed in the experiment could be due to disturbing factors instead of the treatments

Construct validity

- Construct validity
 - Threats concerning issues related to the relationship between
 - cause construct and treatment
 - effect construct and outcome
 - They refer to the extent to which the experiment settings actually reflect the construct under study

SoftEng

External validity

- External validity
 - Can the result of the study be generalized outside the scope of the study ?

Validity evaluation

- For each threat type, a list of threats is available in [Cook79] and [Campbell63]
- Priority among the threats is a matter of optimization
- Possible rank in theory testing:
 - Internal construct conclusion external
- Possible rank in applied research:
 - Internal external construct conclusion

SoftEng

OPERATION

Operation

- Preparation
 - Get participants
 - Ethical issues
 - Privacy issues
- Execution
 - Data collection
- Data validation

Ethical issues

- Professionals
 - Paid to perform a task
- Students
 - Recruitment
 - Experiment as part of a course
 - Is it integrated?
 - Do all participants go through equivalent experience (counterbalanced design)
 - Credits
- Ethical board

SoftEng

Privacy

- In Italy there is quite a strict law:
 - http://www.garanteprivacy.it/garante/ document?ID=1219452
 - Section 7 provides a list of the rights of the subject,
 - Section 13 details the information to be provided to the subjects

Privacy

- Information to be provided
 - Purposes and modalities of the processing for which the data are intended
 - Nature of providing the requested data
 - Consequences of denial to reply
 - Entities or categories of entity of data communication and dissemination
 - Rights
 - Responsible for the data

SoftEng

101

Privacy information

- Purposes and modalities of the processing for which the data are intended
 - The data you provide will be handled for statistical and scientific purposes, aimed at investigating the details of software development. The handling will be carried on by electronic means.
- Nature of providing the requested data
 - The participation in the investigation is voluntary.
- Consequences of denial to reply
 - Denying to answer will have no consequence.
- Entities or categories of entity of data communication and dissemination
 - Personal data collected during the investigation will be shared only among the researchers involved in the project.

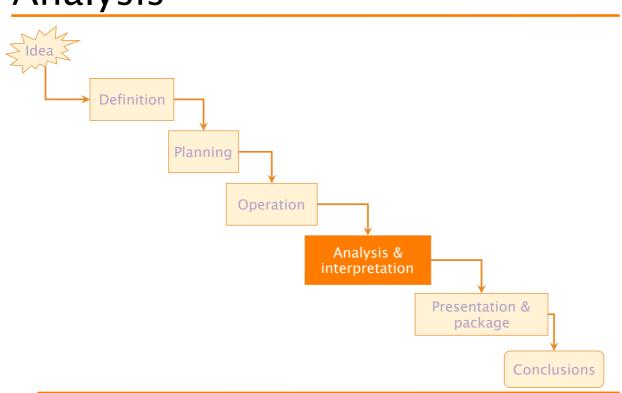
SoftEng

Privacy information

- Rights
 - At any time you will be able to exert your rights with the responsible for the data handling, according to section 7 of D.lgs. 196/2003, which we copy integrally:
 - **◆** ...
- Responsible for the data
 - The responsible for data treatment is ...

SoftEng

Execution


- Data collection
 - Manually entered by participants
 - Tool supported
 - Interviews
 - Automatic
- Experimental environment

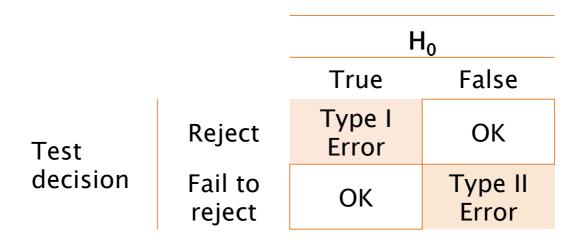
ANALYSIS AND INTERPRETATION

SoftEng

105

Analysis

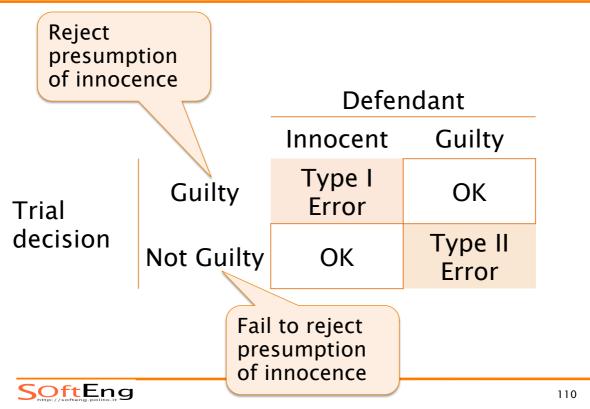
Analysis and interpretation


- Descriptive statistics
 - Distribution
 - Central tendency
 - Dispersion
 - Visualization
- Data reduction
- Hypothesis testing

SoftEng

Error types

- Type I error
 - When we conclude there is a trend/ pattern but actually there isn't
 - $\alpha = P(reject H_0 | H_0 is true)$
- Type II error
 - When we don't see any relation between factors and outcome, but actually there is a trend/pattern
 - $\beta = P(accept H_0 | H_0 is false)$


Error types – Hypothesis testing

SoftEng.

109

Error types – Justice system

- The power of a test is the probability that the test reveal a true pattern if H₀ is false
- Power = P(reject $H_0 | H_0$ is false) = 1 - P(accept $H_0 | H_0$ is false) = 1 - P(type II error) = 1 - β

SoftEng

Hypothesis testing

- Steps
 - Fix the significance level (α)
 Typically in planning phase
 - Select the statistical tests
 Typically in planning phase
 - Perform the tests
 - Decide about null hypotheses
 - Reject
 - Fail to reject

SoftEng

Significance level α

- What is the acceptable α level in our study?
 - Level of confidence: $1-\alpha$
- Standard levels:

Significance (α)	Confidence (1−α)	
5%	95%	
1%	99%	
SoftEng		113

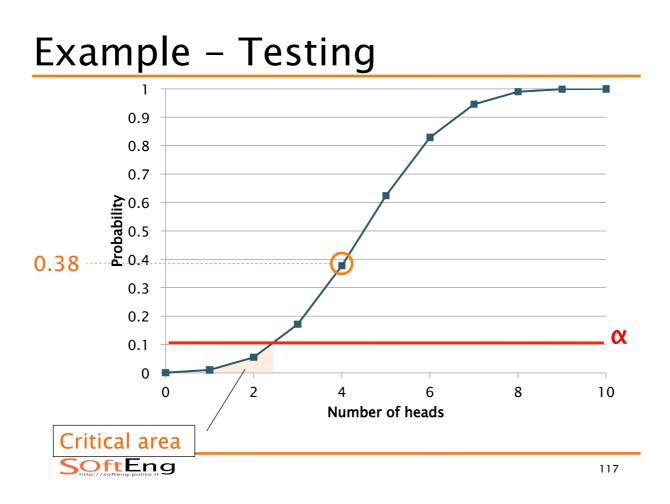
Test

- P-value
 - probability of obtaining a test statistic at least as extreme as the one that was actually observed, assuming that the null hypothesis is true
- Decision
 - Reject when p-value $< \alpha$
 - Fail to reject when p-value > α

Example – Hypothesis

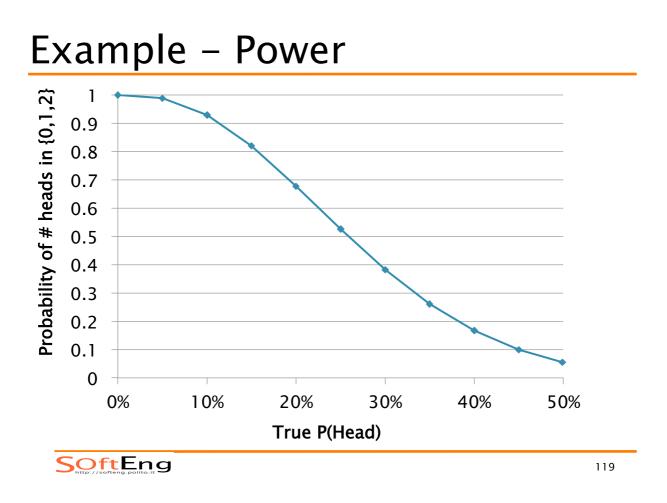
- Conjecture:
 - coin is "tricky" and disfavors heads
- Consequence:
 - as a result of a series of tosses the number of heads is smaller than the number of tails.
- Hypotheses
 - H₀: Heads = Tails = # Tosses / 2
 - H_a: Heads < Tails
- We assume $\alpha = 10\%$

SoftEng

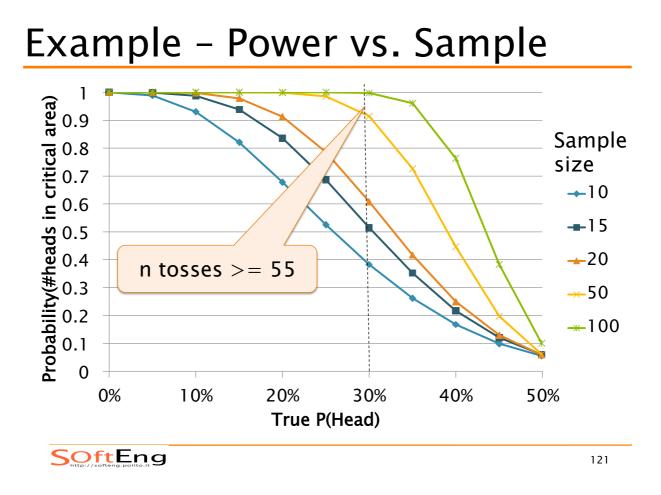

115

Example – Experiment

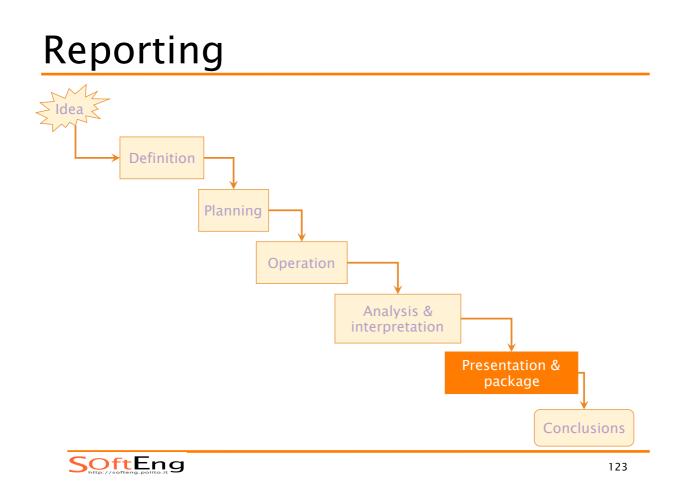
Experiment result: 4 heads in 10 trials



- Assuming H₀ is true, what is the probability of having 4 or less heads in 10 trials?
 - Binomial distribution
 - Cumulative function


Example – Power

- What is the real capability of the previous experiment to discover a tricky coin?
 - Power
- Assuming H₀ is false (H_a is true) what is the probability of rejecting H₀?
 - We reject H₀ if we are in the critical area
 In the example above: # Heads in {0, 1, 2}
 - H_a is true if P(Head) < 0.5


Example – Power

- Let's suppose we suspect that heads show up just 30% of the times
 - P(Head) = 30%
- How many trials should we run to have at least 95% of chances to discover such a bias?
 - Power > 0.95

PRESENTATION AND PACKAGING

SoftEng.

Reporting

- Introduction
- Problem statement
- Experiment planning
- Operation
- Data analysis
- Interpretation
- Discussion and conclusions

APA Guidelines

- Abstract
- Introduction
- Method
 - Design
 - Subjects/Participants
 - Apparatus/Materials
 - Procedure
- Results
- Discussion

SoftEng

125

Replication package

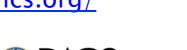
- "Laboratory packages" (Basili et al., 1999; Shull et al.; 2002; Ciolkowski et al., 2002)
- Fundamental to allow replication
 - Analysis and goals of the experiment
 - Motivation for the design decisions
 - Experimental design, including validity threats and strengths
 - Context in which the experiment was carried on
 - Procedure
 - Analysis methods

SoftEng

Online databases

- Promise
 - http://promisedata.org/?cat=11
- Floss metrics Free/Libre and Open Source Software Metrics
 - http://melquiades.flossmetrics.org/
- Sw Lifecycle Empirical DB
 - http://www.thedacs.com/databases/sled/

SoftEng


Online repositories

- Zenodo
 - Link to GitHub
- FigShare

Bibliography

- Claes Wohlin, Per Runeson, Martin Host, Magnus Ohlsson, Bjorn Regnell, Anders Wesslen. 2012. Experimentation in Software Engineering – An Introduction. Kluwer.
- Basili, Victor; Gianluigi Caldiera, H. Dieter Rombach (1994). "The Goal Question Metric Approach"
 - ftp://ftp.cs.umd.edu/pub/sel/papers/gqm.pdf
- Van Solingen, Rini; Egon Berghout (1999). The Goal/Question/Metric Method. McGraw-Hill Education.

129

Bibliography

- Regnell, Björn, Per Runeson, and Thomas Thelin. "Are the perspectives really different?-further experimentation on scenario-based reading of requirements." *Empirical Software Engineering* 5(4) (2000): 331-356.
- Ricca, et al. "How Developers' Experience and Ability Influence Web Application Comprehension Tasks Supported by UML Stereotypes: A Series of Four Experiments." *IEEE Transactions on Software Engineering*, 36(1) (2010): 96–118.
- Ricca et al., Assessing the Effect of Screen Mockups on the Comprehension of Functional Requirements. ACM Transactions on Software Engineering and Methodology, 24(1) (2014)