Measurement

Empirical Methods in Software Engineering (01OPJIU)

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

You are free: to copy, distribute, display, and perform the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or licensor.

Non-commercial. You may not use this work for commercial purposes.

No Derivative Works. You may not alter, transform, or build upon this work.

- For any reuse or distribution, you must make clear to others the license terms of this work.
- Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

Contents

- Introduction to measurement
- Theory of measurement
- Measurement scales
- Software Product Quality measures
- Common metrics

SoftEng.polito.it

Measurement

the process of empirical objective assignment of numbers to entities, in order to characterize a specific attribute thereof

Measurement

- Entity:
 - an object or event
- Attribute:
 - a feature or property of an entity
- Objective:
 - the measurement process must be based on well-defined rules and procedures whose results are repeatable

SoftEng.polito.it

Measurement Conceptual Model

Terms

Measure (noun): variable to which a value is assigned as the result of measurement.
Measure (verb): Make a measurement.
Measurement: The process of assigning a number or category to an entity to describe an attribute of that entity.
Metric: A measurement scale and the method used for measurement
Indicator: Measure that provides an estimate or evaluation derived from a model with respect to defined information needs

SoftEng

Examples of metrics

Entity	Attribute	Measure
Person	Age	Year of last birthday
Person	Age	Months since birth
Source code	Length	# Lines of Code (LOC)
Source code	Length	# Executable statements
Testing process	Duration	Time in hours from start to finish
Tester	Efficiency	Number of faults found per KLOC
Testing process	Fault frequency	Number of faults found per KLOC
Source code	Quality	Number of faults found per KLOC
Operating system	Reliability	Mean Time to Failure

Guidelines

- Specify both entity and attribute
 The entity must be defined precisely
- You must have a reasonable, even just intuitive understanding of the attribute before you propose a measure.
- You must not re-define an attribute to fit in with an existing measure.

SoftEng.polito.it

Common mistake

- Mistake: propose a 'measure' if there is no consensus on what attribute it characterizes.
- Results of an IQ test
 - Intelligence?
 - or verbal ability?
 - or problem solving skills?
- # defects found / KLOC
 - quality of code?
 - quality of testing?

SoftEng.

Type and use

- Types
 - Direct measurement
 - Indirect measurement
- Uses of measurement:
 - for assessment
 - for prediction
 - Measurement for prediction requires a prediction system/model

SoftEng.polito.it

Direct measures

- Length of source code
 E.g. measured by LOC
- Duration of testing process
 - E.g. measured by elapsed time in hours
- Number of defects discovered during the testing process
 - E.g. measured by counting defects
- Effort of a programmer on a project
 - E.g. measured by person months worked

SoftEng

Indirect measures

Programmer productivity =	LOC produced person months of effort
Module defect density =	number of defects module size
Defect detection efficiency =	number of defects detected total number of defects
Requirements stability =	# of initial requirements total #of requirements
Test effectiveness ratio =	number of items covered total number of items
System spoilage =	effort spent fixing faults total project effort
	13

Predictive measurement

- Requires a prediction system
 - Mathematical model
 - e.g. 'E=aS^b' where *E* is effort in person months (to be predicted), *S* is size (LOC), and *a* and *b* are constants.
 - Procedures for determining model parameters
 - e.g. 'Use regression analysis on past project data to determine a and b'.
 - Procedures for interpreting the results
 - e.g. 'Use Bayesian probability to determine the likelihood that your prediction is accurate to within 10%'

Entity classes

Internal vs. External

Given an entity (process, product, or resource)

- Internal attributes can be measured purely in terms of the entity itself (static)
 - e.g. length or complexity of source code (product)
- External attributes can only be measured with respect to how the entity relates to its environment (dynamic)
 - e.g. reliability or maintainability of source code (product)

SoftEng.

Metrics

	Attributes		
Entities	Internal	External	
PRODUCTS Specification Source Code 	Length, functionality modularity, structuredness, reuse	maintainability reliability 	
PROCESSES Design Test	time, effort, #spec faults found	stability cost- effectiveness 	
RESOURCES People, Tools	age, price, CMM level price, size 	productivity usability, quality	
		17	

Measurement Process

Warning

The more any quantitative social indicator is used for social decision– making, the more subject it will be to corruption pressures and the more apt it will be to distort and corrupt the social processes it is intended to monitor.

Campbell's law

SoftEng.

MEASUREMENT THEORY BASICS

SoftEng.polito.it

Evolution of metrics

- Metrics depend on the understanding of the attribute
- More sophistication as understanding of an attribute grows
- E.g. temperature of matter:
 - 200BC: rankings, "hotter than"
 - 1600: first thermometer still "hotter than"
 - 1720: Fahrenheit scale
 - 1742: Centigrade scale
 - 1854: Absolute zero, Kelvin scale

SoftEng.polito.lt

21

Measurement theory

- Scientific basis to determine formally:
 - When we have really defined a measure
 - Which statements involving measurement are meaningful
 - What the appropriate scale type is
 - What types of statistical operations can be applied to measurement data
- Based on foundation laid down by Stevens (1946)

Empirical relation system

- A set of entities
- The relations about entities, observed in the real world, which characterize our understanding of the attribute under consideration
 - e.g. 'Fred taller than Joe' (for *height* of *people*)
- The closed operations that can be performed on the objects

SoftEng.

Measurement mapping

- Mapping from the empirical world to the formal world
 - Measure
 - Relation mapping
- A.k.a. representation, homomorphism
- Measure: the quantity assigned to an entity in order to characterize an attribute

SoftEng.

Representation condition

- Measurement mapping implies that all empirical relations are preserved in numerical relations and no new relations are created
 - e.g. M(Fred) > M(Joe) precisely when Fred is taller than Joe
- Admissible measure if the representation condition holds
 - Measurement scale

SoftEng.

Formally

We can define a homomorphism m

scale: $(\mathfrak{E}, \mathfrak{F}, m)$ empirical system: $\mathfrak{E} = (E, \text{taller})$ formal system: $\mathfrak{F} = (\mathbb{R}, >)$ mapping function: $m: E \to \mathbb{R}|$

 $(\mathfrak{E}, \mathfrak{F}, m)$ $\mathfrak{E} = (E, \text{taller})$ $\mathfrak{F} = (\mathbb{R}, >)$ $m : E \to \mathbb{R}|$ $\forall a, b \in E, a \text{ taller } b \implies m(a) > m(b)$

SoftEng.

Additive metric

 A possible additional requirement is to have and additive measure

scale: empirical system: formal system: mapping function:

$$(\mathfrak{E}, \mathfrak{F}, m)$$

$$\mathfrak{E} = (E, \text{taller}, \text{added})$$

$$\mathfrak{F} = (\mathbb{R}, >, +)$$

$$m : E \to \mathbb{R}|$$

$$\forall a, b \in E :$$

$$a \text{ taller } b \implies m(a) > m(b)$$

$$m(a \text{ added } b) = m(a) + m(b)$$

SoftEng.

Admissible transformation

- Metrics are not unique, in general there are several homomorphisms
- Admissible transformation Φ
 - + $\Phi \circ m$ is an homomorphism
 - Mapping between two measures, e.g. length
 - Admissible transformation: $M' = a^*M$
 - Inadmissible transformation: $M' = a^*M + b$

SoftEng.polito.it

MEASUREMENT SCALES

lssues

- Representation problem
 - How do we know if a particular empirical relation system has a representation in a given numerical relation system?
- Uniqueness problem
 - How do we deal with several possible alternative representations (scales) in the same numerical relation system?
- Pragmatic problem
 - Which is the preferred numerical relation system for a given empirical relation system?

SoftEng

31

Relation System richness

- RS_A is richer than RS_B if all relations in RS_B are contained in RS_A
- The richer the empirical system the more sophisticate the scale
- Complex and well understood phenomena require more sophisticate measurement scales

Scale types

- Nominal
- Ordinal
- Interval
- Ratio
- Absolute

SoftEng

Admissible measure

- Measure that is able to represent all the empirical relations
 - There may exist several admissible measure
 E.g. Length: inch, cm, feet, meter, miles

Т

Richness

+

- Admissible transformation
 - Mapping between two admissible measures
 - The more sophisticated the scale the more restricted the class of admissible transformation

- E.g. Admissible Length transformation: $M' = a^*M$

- Inadmissible transformation: $M' = a^*M + b$

SoftEng.

Nominal scale

- Places elements in classification schema
- Empirical scale: different classes
 No ordering relation
- Any representation based on a set of distinct numbers or symbols is acceptable
 - No notion of magnitude

SoftEng.polito.it

Nominal scale example

- Empirical system
 - Entity: fault
 - Attribute: artifact type
 - Specification, design, code
- Admissible mapping
 - M(x) =

Sif x is a specification fault

D if x is a design fault

C if x is a code fault

SoftEng

Nominal Statistics

- Only a base operation: count
- Available statistics
 - Frequency (per category)
 - Mode

SoftEng.polito.lt

37

Ordinal scale

- Empirical system: classes ordered wrt the attribute
- Acceptable mapping: any mapping preserving the order
 - Measure represent ranking only
 - Acceptable transformations are the set of all monotonic mappings
 - <C1, C2, ... Cn> \rightarrow <a₁, a₂, ... a_n>
 - Where $\forall i > j$, $a_i > a_j$

SoftEng

Ordinal scale example

- Empirical system
 - Entity: statement
 - Attribute: agreement
 - Completely disagree, Mostly disagree, Mostly agree, Completely agree
- Admissible mapping

39

Ordinal scale example

- Empirical system
 - Entity: code
 - Attribute: size class
 - Small, medium, large
- Admissible mapping
 - M(x) =
 - -1 if x is small
 - 2 if x is medium
 - 3 if x is large

SoftEng

Ordinal Statistics

Operations:

- Counting
- Sorting

Available statistics

- Frequency (per category)
- Mode
- Rank
- Quantiles (Median)

SoftEng.polito.lt

Interval scale

- Empirical system: order and differences between classes
- Acceptable mappings: preserve order and difference
 - Addition and subtraction make sense
 - The ratio makes no sense
- Acceptable transformations are affine transformations
 - M' = a * M + b

SoftEng.

Interval scale example

- Empirical system
 - Entity: activity
 - Attribute: calendar start time
 - Gregorian calendar
 - Months since project begin
- Admissible transformation
 - PM counts month since project start - Jan 1, 2010
 - CEO uses calendar year
 - $M_{PM} = 12*(M_{CEO}-2010)$

SoftEng.polito.lt

43

Interval Statistics

- Operations:
 - Counting, sorting
 - Sum, Difference, Scalar division
- Available statistics
 - Frequency, Mode, Rank, Quantiles
 - Mean (Arithmetic Average)
 - Variance (and derivatives)

Ratio scale

- Preserves ordering, size of intervals, and ratios between entities
- There is a zero element
 - Represents total lack of attribute
 - Measurement starts at zero and increases at equal intervals: called units
 - All arithmetic can be applied meaningfully to classes in the range of the mapping
- Admissible transformation
 - Ratio transformation
 - M' = a*M

SoftEng

45

Ratio scale example

- Empirical system
 - Entity: person
 - Attribute: age
 - Years, Months
- Admissible transformation
 - $M_{Months} = a * M_{Year}$ - Where a = 12

Ratio scale example

- Empirical system
 - Entity: code
 - Attribute: length
 LOC
- Admissible transformation
 - $M_{LOC} = lines of code$
 - M_{Char} = characters of code
 - $M_{Char} = a * M_{LOC}$
 - Where a = average chars per line of code

SoftEng

47

Ratio Statistics

- Operations:
 - Counting, sorting
 - Sum, Difference, Scalar division
 - Division, (Multiplication)
- Available statistics
 - Frequency, Mode, Rank, Quantiles, Mean (Arithmetic Average), Variance (and derivatives)
 - Standardized mean, etc.
 - Geometric mean, etc.

SoftEng.

Absolute scale

- Measurement made simply counting items in the entity set
 - Number of occurrences
 - Only one possible mapping
 - All arithmetic analysis is meaningful

SoftEng.polito.it

Absolute scale (counter)examples

- Empirical system
 - Entity: project
 - Attribute: full time staff
 - Number of full time developers
- The attribute definition implies the items to be counted!
 - Length is not measurable on an absolute scale, # of lines it is
 - Age is not measurable on absolute scale

SoftEng

Scales

Scale	Admissible Transformations	Example
Nominal	1-to-1 mapping	Labeling, classifying entities
Ordinal	Monotonic increasing function	Preference, hardness
Interval	M' = a*M+b With: $a>0$	Relative time, temperature
Ratio	M' = a*M With: a>0	Time interval, length
Absolute	M' = M	Counting entities
		51

Meaningful statements

 A statement involving measurement is meaningful if its truth is invariant of transformation of allowable scales

Meaningful statements

Statements

- The number of errors discovered during the integration testing was at least 100
- The cost of fixing each error is at least 100 ?
- A semantic error takes twice as long to fix as a syntactic error
- A semantic error is twice as <u>complex</u> as a syntactic error

SoftEng.polito.lt

53

Meaningful statements?

- Fred is twice as tall as Jane
- The temperature in Tokyo today is twice that in London
- The difference in temperature between Tokyo and London today is twice what it was yesterday

SoftEng

Statistical operations

Central tendency

Туре	Mean	Median	Mode
Nominal	×	×	1
Ordinal	×	1	1
Interval	1	1	1
Ratio	1	1	1
Absolute	1	1	1

Objective vs. Subjective

- Objective measures do not depend on the environment or the person collecting the measure
 - A small portion of subjectivity cannot be avoided
- Subjective measures depend on the context where they are collected
 - Can change according to the person
 - They reflect the perception and judgment of the person performing the measurement

SoftEng.polito.it

Interpretation

- If only measure values are available you know nothing
- Interpretation requires a reference to
 - Target
 - Benchmark
 - Time series
 - Population norm

SoftEng.polito.lt

Interpretation

- Conformance: compare to a specific business or usage requirement
- Benchmark: compare with a benchmark for similar product or system
- Time series: observe trend in time
- Population norms: compute quantile
 - Require a db of previous values

SoftEng.polito.lt

Interpretation: rating

Measurement sca	le	Rating level	
Minimum level of		Excellent	
Minimum level of		Acceptable	-
measure to avoid risk		Unacceptable	_
Softeng.polito.it			
			59

59

SOFTWARE MEASURES

Process measures

- Duration
 - Of process or one of its activities
- Effort
 - Of process or one of its activities
- Number of events
 - Of a given type
 - Arising during process or one of its activities
- Subjective measures

SoftEng.polito.it

Product measures

- External attributes
 - Reliability
 - Understandability
 - Usability
 - Integrity
 - Efficiency
 - Testability
 - Reusability
 - Portability

SoftEng

Quality myth

- Term used to describe an internal attribute
- Inherently multidimensional
 - There are several aspects to quality
 - A single aggregate (indirect) measure of quality implies weighting all different aspects

SoftEng.polito.it

63

ISO 9126

- Software product quality
 - Issued 1991, revised 2001
 - Being superseded by ISO/IEC 250xx
 - **SQuaRE** (Software product Quality Requirements and Evaluation)

SoftEng

ISO 9126 - External metric

Breakdown avoidance

Purpose	How often can user avoid breakdown of system, even if critical failures occurred?
Method of application	Count the number of breakdowns occurrence with respect to number of failures. If it is under operation, analyze log of user operation history.
Definition	 Breakdown avoidance ratio X= 1- (A / B) A= Number of breakdowns B= Number of failures NOTE: 1.The breakdown means executing of any user task is suspended until system is restarted up, or its control is lost until system is enforced to be shut down. When none or a few failures observed, time between breakdown may be more suitable.
Interpretation	$0 \le X \le 1$ The closer to 1.0 is the better.

ISO 9126 - Internal metric

Test coverage

Purpose	How much of the required test cases are covered by the test plan?
Method of application	Count the number of test cases planned and compare it to the number of test cases required to obtain adequate test coverage.
Definition	X=A/B A=Number of test cases designed in test plan and confirmed in review B= Number of test cases required
Interpretation	$0 \le X$ Where X is the greater the better adequacy

Product metrics

- Internal attributes
 - Few simple and easy to measure - E.g. size
 - Other controversial
 - E.g. complexity
 - Automated measurement

Internal Product Attributes

- Methodologies address structuring and improvement of software products in terms of
 - Development process
 - Products
 - Typically characterized by internal attributes
- Quality assurance
 - Internal attributes can be measured during development to predict and control external ones

SoftEng.

69

Resources

- Input for sw development
 - Personnel
 - Individuals and teams
 - Materials
 - E.g. office supplies
 - Tools
 - Both HW and SW
 - Methods

Resource metrics

- Magnitude
 - E.g. How many staff?
- Cost
 - E.g. Payments for testing tools
- Quality
 - E.g. Experience of developers
- Productivity = <u>Amount of output</u>
 Indirect measure
 SoftEng

Quality in use

Product

Quality in use

SoftEng

73

ISO 9126 - Q in Use metric

Task effectiveness

Purpose	What proportion of the goals of the task is achieved correctly?
Method of application	User test
Definition	$\begin{split} &M1 = 1 - \Sigma \ A_i \\ &A_i = Proportional value of each missing or incorrect \\ &component in the task output \\ &NOTE: Each potential missing or incomplete component is given a weight \\ &Ai based on the extent to which it detracts from the value of the output to the business or user. \\ &The scoring scheme is refined iteratively by applying it to a series of task outputs and adjusting the weights until the measures obtained are repeatable, reproducible and meaningful. \end{split$
Interpretation	$0 \le M1 \le 1$ The closer to 1.0 is the better.

COMMON METRICS

SoftEng.polito.it

Common measures

Function points

- Function Point Analysis, developed by Allan J. Albrecht in the late 1970s
- Several variations
 - ISO/IEC 19761 (COSMIC method),
 - ISO/IEC 20926 (IFPUG method)
 - ISO/IEC 20968 (Mk II method),
 - ISO/IEC 24570 (NESMA method), and
 - ISO/IEC 29881 (FiSMA method).

SoftEng.polito.it

77

COSMIC FP – Principles

- Software interacts with its users across a boundary, and with storage
- User requirements can be mapped into unique functional processes.
- Each functional process consists of sub-processes: a data movement or a data manipulation.
- A data movement moves a single data group .
 - Entry: data from user to system.
 - Exit data from system to user.
 - Write data from system to persistent storage.
 - Read data from persistent storage to system.
- Data group: set of attributes that describe a single object of interest
- Each process is started by its triggering Entry data movement.

SoftEng.

Lines Of Code (LOC)

- Most intuitive
 - Count the number of lines of code
- Operational aspects
 - What to include/exclude in the count?
 - How to deal with complex lines?

SoftEng.polito.it

LOC - Operational aspects

- Inclusion/exclusion
 - Executable lines
 - Declarations
 - Comments
 - COTS
 - Automatically generated code
 - Reused code
- Multiple instructions on a line
 - Number of statements
 - Number of lines

SoftEng.

LOC: Pros & Cons

- Easy to understand ©
- Hard to measure precisely ⊗
 - ◆ Easy of an approximate measure ☺
 e.g. wc -1 *.c
- Very widely used [©]
 - \bullet Several predictive models use LOC \odot
- If measures productivity it does not favors well structured programs ⁽³⁾

SoftEng.polito.lt

Mc Cabe Cyclomatic Complexity

- Complexity of the control flow
- Control flow is represented as a Control Flow Graph (CFG)
- V(G) is the number of base paths in G
 - The number of linearly independent paths from initial node to final node

Cyclomatic number

- If G is a strongly connected graphs
 - V(G) = #E #N + 1
- A typical CFG is not strongly connected, unless we add an edge from the final to the initial node

•
$$V(G) = #E - #N + 2$$

SoftEng.

Cyclomatic complexity

V(G) = E - N + 2 = 14 - 11 + 2 = 5

OftEng

C1: 1,3,8,13
C2: 1,4,9,13
C3: 1,5,10,13
C4: 2,6,11,14
C5: 2,7,12,14

84

McCabe Pros & Cons

- Well defined from a mathematical point of view
- Typically strongly correlated with LOC
- Focus on code complexity
 - Disregards data-related complexity

SoftEng.polito.it

Design Metrics – CK

- Chidamber and Kemerer [TSE94]:
- Weighted Methods per Class (WMC)
 - count of methods in each class
- Number Of Children per class (NOC)
 - number of immediate sub-classes of a class
- Depth of Inheritance Tree (DIT):
 - maximum inheritance path from the class to the root class
- Coupling Between Object classes (CBO)
 - number of classes to which a class is coupled

SoftEng.

Design Metrics – CK

- Response For a Class (RFC)
 - Sum of cardinalities of
 - methods in the class
 - remote methods directly called by methods of the class
- Lack of Cohesion in Methods (LCOM)
 - LCOM = P Q, if P > Q= 0 otherwise
 - Where
 - Q = # pairs of methods sharing attributes
 - P = # pairs of methods not sharing attributes

SoftEng

87

LCOM – Henderson–Sellers

Alternative definition of LCOM

$$LCOM2 = 1 - \frac{\sum mA_i}{m \cdot a}$$

- Where
 - m: number of methods in class
 - a: number of attributes in class
 - mA_i: num. of methods using attribute A_i

SoftEng.polito.it

CK – Pros & Cons

- Theoretical validation lacking ⊗
- Empirical validation lacking ⊗
- Not all metrics can be easily computed
 - RFC e LCOM need implementation details

- Design or code metrics?

SoftEng.polito.lt

89

DATA QUALITY

Data Quality

- Decisions taken on the basis of indicators are as good as the quality of the indicators themselves
- Data quality is a key factor

SoftEng.polito.lt

91

ISO – SQuaRE

2503 <i>x</i>	2501 <i>x</i> Quality Model	2504
Quality Requiremen	2500 <i>x</i> Quality Management	2504 <i>x</i> Quality Evaluation
ts	2502 <i>x</i> Quality Measurement	
Softeng.polito.it		

Data Quality Standard

- ISO 25012-Data Quality Model
 - Quality characteristics
- ISO 25024-Data Quality Measurement
 - Measures

SoftEng.polito.lt

93

Characteristics

			Inherent	Inherent– System dependent	System dependent
Facts	Data		Accuracy Completeness Consistency Credibility Currency		
Arte Facts	Data Sw Hw Sys	НСІ		Accessibility Understandability	
		Supp ort		Compliance Confidentiality Efficiency Precision Traceability	Availability Portability Recoverability

Bibliography

- Stevens, S. S. (June 7, 1946). "On the Theory of Scales of Measurement". Science 103 (2684): 677-680
- Roberts, F. (1979). "Measurement Theory with Applications to Decision Making, Utility, and the Social Sciences", Addison-Wesley.
- N. Fenton (1994). "Software Measurement: A Necessary Scientific Basis." In *IEEE Transactions on Software Engineering*, 20(3):199–206, March 1994.
- N. Fenton, S. Pfleeger. "Software Metrics: A Rigorous Approach". PWS Publishing, 1998.
- ISO (2007). Systems and software engineering Measurement process, ISO/IEC 15939:2007(E)

SoftEng.

Bibliography

- S.R. Chidamber, C.F. Kemerer. "A Metrics Suite for Object-Oriented Design" IEEE Transactions on Software Engineering 20(6), 1994.
- T. McCabe "A complexity measure" IEEE Transactions on Software Engineering 2(4), 1976.
- V. Basili, L. Briand, W. Melo. "A Validation of Object-Oriented Design Metrics as Quality Indicators" IEEE Transactions on Software Engineering 22(10), 1996

