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Agenda 
§  R statistical package 
§  Distributions 

w Functions 
w Central Limit Theorem 

§  Hypothesis testing 
w One sample 
w Two samples 
w Nonparametric tests 
w ANOVA 
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R STATISTICAL PACKAGE 
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What is R? 

http://cran.r-project.org/ 

§  R is a free software environment for 
statistical computing and graphics.  
w Available on several different platform 
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CLI 
§  Command Line Interface 

w Immediate evaluation of expression 
§  Scripts 

§  Extensive help system 
w http://www.rseek.org/ 
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GUI 
§  Several GUI front-ends 
§  RStudio is a full IDE for R 

w http://www.rstudio.com 
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R elements 
§  Functions 
§  Data types 

w Primitive 
w Compound 
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Functions 
§  Definition 

w percentage <- 
function(part,whole){  
  part / whole * 100;  
} 

§  Usual invocation (positional) 
w percentage(3, 4) 

§  Named arguments 
w percentage(whole=4, part=3) 
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Data types 
§  Primitive 
§  Compound 

§  Type functions:  
w Type of variable: class(x) 
w Check type: is.type(x) 
w Conversion: as.type(x) 

11 

Primitive types 
§  Numeric 

w Default type 
§  Integer 
§  Complex 

w sqrt( 1 + 0i ) à 0 + 1i 
§  Logical 

w TRUE | FALSE 
§  Character 

w Strings 
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Compound types 
§  Vector 

w Creation: v = c(2,4,5) 
–  Everything is vector: 1 == c(1) 

w Sequences: v = seq(from=1,to=2,by=0.1) 
          v = rep(1,time=10) 

w Range: 1:3  equals to  c(1,2,3) 
w Merging: m = c( v1, v2) 

– Type coercion can be applied 
w Arithmetic 

–  Pair-wise on same-index elements 
– Recycling if different size 

–  Longest length must be multiple of smallest length 
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Compound types 
 s = c("aa", "bb", "cc", "dd", "ee")  

§  Vector index 
w Operator [] 

–  Simple index: s[3] à “cc” 
–  Slicing vector index: s[ c(1,3) ] à “aa” “cc” 
– s[c(5,1,1,3)] à “ee” “aa” “aa” “cc” 
–  Logical vector: s[ l ] à “aa” “ee” 

–  l = c(TRUE,FALSE,FALSE,FALSE,TRUE) 

w Named vectors 
–  names(s)=c(“First”,”2nd”,”3rd”,”4th”,”Last”) 
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First   2nd   3rd   4th  Last  
 "aa"  "bb"  "cc"  "dd"  "ee"  



Compound types 
§  Matrix 

w Construction: A = matrix(1:9, 3, 3) 
– byrow = FALSE by default 

w Transposition: B = t(A) 
w Composition: C = cbind(A,B)  

                      D = rbind(A,B) 
§  Index 

w Single element: A[ 1 , 3 ] 
w Row:  A[ 1 ,  ] 
w Column: A[ , 2 ] 
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Compound types 
§  List 

w An array whose elements can be either 
primitive or compound types 

w Construction: l = list(c(1,2),”a”) 
w Slicing: l[2] à [[1]] 
        [1] "a" 

w Member: l[[1]] à [1] 1 2 
w Named members: 

– Definition: l=list( n=c(1,2), char=”a”)  
– Access: l$n == l[[“n”]] == l[[1]] 
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Compound types 
§  Factor 

w Represent nominal and ordinal variables 
–  Internally stored as integer vector 

w x = c("A","B","B","D","A","D") 
w Create: f= factor(x, 
        levels=c("A”,"B”,"C”,"D"),  
        ordered=T) 

w Levels: levels(f) 
w Frequencies: table(f) 
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Compound types 
§  Dataframe 

w List of vectors of equal length 
w Construction: df = data.frame(…) 
w Cell indexing: df[1,2] 
w Column selection:  

– df[[1]]  == df[["mgp"] == df$mpg 
w Dataframe slicing 

– Column: df[1] == df["mpg"] 
– Row:  df[1, ]== df["Mazda RX4",] 
           == df[,c(TRUE,FALSE)] 
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           mpg cyl disp  hp 
Mazda RX4      21.0   6  160 110 
Mazda RX4 Wag  21.0   6  160 110 



Import 
§  read.* 

w Read data from a file into a dataframe 
w Space separated: read.table( ) 
w CSV: read.csv( ) 
w Clipboard: read.table(pipe( … )) 

– X11: "clipboard" 
– OS X: "pbpaste" 

w Excel file 
– library(gdata) 
– read.xls() 
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Diagrams 

21 

boxplot(Complete ~ Fit, data=data, 
     xlab="Fit", ylab="Correctness") 
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plot(data$Complete ~ data$TimeTotal, 
  xlim=c(0,120),xlab="Time",ylab="Complete") 

abline(m$coefficients,col="red") 



DATA FRAMES 
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Data frame 

Subject Treatment Score 
1 Control 9 
2 Experiment 8 
3 Control 10 
4 Experiment 5 
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Variables 

Observations 



Variables and Categories 
§  Outcome of experiment or 

questionnaire consist of several 
observations 

§  Each observation is characterized by 
w Quantitative values à the measure of 

interest 
w Categorical values à  

– Factors, groups, and blocks 
– Name of variables 
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Example 
§  G.Scanniello, F.Ricca, M.Torchiano, G.Reggio, 

E.Astesiano “Assessing the Effect of Screen 
Mockups on the Comprehension of Functional 
Requirements” ACM TRANSACTIONS ON SOFTWARE 
ENGINEERING AND METHODOLOGY, Vol.24, pp.
1:1-1:38, 2014 
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Case Study 

TOSEM2401-01 ACM-TRANSACTION September 1, 2014 17:1

Assessing the Effect of Screen Mockups on the Comprehension of Functional Requirements 1:15

Table VI. Postexperiment Survey Questionnaire

Item Valid
ID Question Answers

PQ1 I had enough time to perform the tasks. (1-5)

PQ2 The questions of the comprehension questionnaire were clear to me. (1-5)

PQ3 I did not have any issue in comprehending the use cases. (1-5)

PQ4 I did not have any issue in comprehending the use case diagrams. (1-5)

PQ5 I found the exercise useful. (1-5)

PQ6 I found screen mockups useful (when present) (1-5)

PQ7 To see the screen mockups (when present), I spent (in terms of percentage)
with respect to the total time to accomplish the task.

(A-E)

(1) strongly agree, (2) agree, (3) neither agree nor disagree, (4) disagree, (5) strongly disagree.
(A) < 20%, (B) > 20% and ≤ 40%, (C) > 40% and ≤ 60%, (D) > 60% and ≤ 80%, (E) ≥ 80%

—The requirements specification documents in electronic format (MS Word) of Easy-
Coin and AMICO. In particular, each document contained
(i) the system mission, namely, a textual description of both the functionality of the

future system and the environment in which it will be deployed;
(ii) a UML use case diagram summarizing the use cases of the systems;

(iii) functional requirements expressed as use cases specified according to the cho-
sen template. Depending on the experiment design, use cases were or were not
complemented with screen mockups;

(iv) a glossary of the terms.
—A paper copy of the comprehension questionnaires of EasyCoin and AMICO.
—A paper copy of the postexperiment questionnaire shown in Table VI.
—The training material, which included a set of instructional slides describing the

template employed for the specification of the use cases, some examples not related
with the experiment objects, and a set of slides describing the procedure to follow in
the task execution.

We opted for an electronic format of the requirements specification document to
permit the “Find” facility that is well known also to less-experienced participants and
its use is convenient for large-sized documents. Furthermore, when mockups were
present, the participants could click the hyperlinks in the use cases (see Figure 3) to
visualize the mockups.

The used postexperiment questionnaire is composed of seven items (see Table VI).
That questionnaire is aimed at gaining insights about the participants’ behavior in the
experiment and collecting information useful to better explain quantitative results.
In particular, a first group of questions (PQ1 through PQ5) concerned the availability
of sufficient time to complete the tasks, the clarity of the use cases, and the ability of
participants to understand them. PQ6 was devoted to the perceived usefulness of screen
mockups, while PQ7 aimed at understanding how much time the participants thought
they spent, in percentage intervals, analyzing use cases and screen mockups. All the
items, except PQ7 that is expressed in intervals of percentages, require responses
according to a five-point Likert scale [Oppenheim 1992]: (1) strongly agree, (2) agree,
(3) neither agree nor disagree, (4) disagree, and (5) strongly disagree.

ACM Transactions on Software Engineering and Methodology, Vol. 24, No. 1, Article 1, Pub. date: September 2014.
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Wide Format 
Exp Subject Group Q1 Q2 Q3 Q4 Q5 Q6 Q7 
1 101 1 1 3 1 1 1 2 5 
1 104 1 1 3 2 2 1 2 3 
1 108 1 1 3 4 4 1 1 2 
1 112 1 1 3 2 2 1 1 3 
1 116 1 2 3 2 3 1 2 1 
1 120 1 1 2 2 2 1 1 4 
1 122 1 1 2 1 2 1 1 2 
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Wide Format 
Exp Subject Group Q1 Q2 Q3 Q4 Q5 Q6 Q7 
1 101 1 1 3 1 1 1 2 5 
1 104 1 1 3 2 2 1 2 3 
1 108 1 1 3 4 4 1 1 2 
1 112 1 1 3 2 2 1 1 3 
1 116 1 2 3 2 3 1 2 1 
1 120 1 1 2 2 2 1 1 4 
1 122 1 1 2 1 2 1 1 2 
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ID vars Measure vars 

Long Format 
Exp	 Subject	 Group	 variable	 value	
1	 101	 1	 Q1	 1	
1	 104	 1	 Q1	 1	
1	 108	 1	 Q1	 1	
1	 112	 1	 Q1	 1	
1	 116	 1	 Q1	 2	
1	 120	 1	 Q1	 1	
1	 122	 1	 Q1	 1	

30 



Conversion 
require(reshape2) 
Dw =read.table(“MockupPostQuest.csv”) 

## from wide to long 

dl = melt(dw, id.vars=  

      .(Exp, Subject, Group)) 

## from long to wide 

dw = dcast(dl, … ~ variable) 
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Example 
§  Data from 

w Are Fit Tables Really Talking? 
A Series of Experiments to Understand 
whether Fit Tables are Useful during 
Evolution Tasks  

w http://www.rcost.unisannio.it/mdipenta/
Fit-Package.zip  
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DISTRIBUTIONS 
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Distributions 
§  Probability distribution describes the 

probability of a random variable to 
assume certain values 
w Discrete 
w Continuous 
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Measures of Shape 
§  Skewness: absence of symmetry 

w Extreme values in one side of a 
distribution 

§  Kurtosis: peakedness of a distribution 
w Leptokurtic:   high and thin 
w Mesokurtic:   normal shape 
w Platykurtic:  flat and spread out 
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Skewness 

Negatively 
Skewed 

Mode 
Median 

Mean 

Symmetric 
(Not Skewed) 

Mean 
Median 
Mode 

Positively 
Skewed 

Mode 
Median 

Mean 

Coefficient of Skewness 
§  S: Summary measure for skewness 
§  library(moments) 
S = skewness(x)  
w If S < 0, the distribution is negatively 

skewed (skewed to the left). 
w If S = 0, the distribution is symmetric (not 

skewed). 
w If S > 0, the distribution is positively 

skewed (skewed to the right). 
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Kurtosis 
§  Peakedness of a distribution 

w Leptokurtic:  high and thin 
w Mesokurtic:  normal in shape 
w Platykurtic:  flat and spread out 
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Leptokurtic 

Mesokurtic 
Platykurtic 

K=0 K<0 K>0 

Kurtosis 
§  K: measure of kurtosis 

w library(moments) 
kurtosis(x)  

w K > 0: leptokurtic 
w K = 0: mesokurtic 
w K < 0: platykurtic 
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Discrete distribution 
§  Absolute Frequency 

w table( v ) 
w barplot(table(v)) 

§  Relative frequency 
w table( v ) / length(v) 

§  Cumulative frequency 
w cumsum(table(v)) 

– Meaningful for at least ordinal data 
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Density + Cumulative 
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Binomial 
§  Describes the outcome of n 

independent trials in an experiment. 
Each trial is assumed to have only two 
outcome, labeled as success or failure 
w Probability of having x successful trials 
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Binomial - PMF 
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Binomial - PMF 
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Binomial - Example 
§  Ten multiple choice questions in a 

quiz. Each question has five possible 
answers, and only one of them is 
correct.  

§  Find the probability of having four or 
less correct answers if a student 
attempts to answer every question at 
random. 
w pbinom(4, size=10, prob=1/5) 
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Binomial - CDF 
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Poisson 
§  Distribution of independent events 

occurrence in an interval. If λ is the 
mean occurrence per interval. 
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Normal 
§  Continuous distribution 
§  Symmetrical distribution 
§  Asymptotic to the horizontal axis 
§  Unimodal 
§  A family of curves 
§  Area under the curve sums to 1. 

49 

Normal 
§  Equation: 

w µ = mean of X 
w σ = standard deviation of X 
w π = 3.13159… 
w  e = 2.71828… 
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Normal 
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Standardized Normal 
§  Distribution with 

w  a mean of zero, and  
w  a standard deviation 

of one 
§  Z Formula 

w  standardizes any 
normal distribution 

§  Z Score 
w  computed by the Z 

Formula 
w  the number of 

standard deviations 
which a value is away 
from the mean 
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95% confidence interval 

µ X 

Z 
0 

€ 

−1.96

€ 

α
2

= 0.025

€ 

1−α
2

=0.475

€ 

α
2

= 0.025

€ 

1−α
2

=0.475

€ 

+1.96

pnorm(-1.96) 1-pnorm(-1.96) 

qnorm(0.025) qnorm(1-0.025) 

56 

Summary of confidence levels 

Confidence 
Level 

Z Value 

90% 1.645 
95% 1.96 
98% 2.326 
99% 2.576 



Empirical rule 
§  Almost all the data fall within 3 

standard deviations (Z=3) of the mean 
§  95% of the data fall within 2 standard 

deviations (Z=2) of the mean 
§  Two thirds of the data falls within one 

standard deviation (Z=1) of the mean 
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31.5% 

qnorm(0.165) = -0.9741 -2 

pnorm(-2)  
= 0.02275 

Distributions in R 
§  ddistr(x, size, prob, log=F) 
§  pdistr(q, size, prob, lower.tail=T, log.p=F) 
§  qdistr(p, size, prob, lower.tail=T, log.p=F) 
§  rdistr(n, size, prob) 
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binom  Binomial 
pois  Poisson 
unif  Uniform 
exp  Exponential 
norm  Normal 
t  Student t 



Checking for normality 
§  Quantile-Quantile plot 
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library(car) 
qqPlot(x) 

Checking for normality 
§  Shapiro-Wilk test 
H0: sample drawn from normal 

population 
> shapiro.test(x) 
 Shapiro-Wilk normality test 
data:  x  
W = 0.9893, p-value = 0.6092 
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Chi squared distribution 
§  Distribution of the sum of the square 

of k independent normal variables 
w Degrees of freedom df = k 
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df=4 

dchisq(x,df=4) 

CENTRAL LIMIT THEOREM 
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Central Limit Theorem 
§  The random variable Sn that is 

constructed as the mean of a sample of 
size n of independent and identically 
distributed random variables 

 
§  For large values of n, the distribution of 

Sn is approximately normal with 
w Mean: 

w Standard deviation:  
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Sn =
1
n

X
Xi

�S =
�Xp

n

µS = µX

CLT 
§  The result is independent of the actual 

distribution of the original random 
variables 

§  The result is (mostly) independent of 
the size of the population 

§  The “precision” of the mean estimate 
depends on the sample size 
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CLT – normalized form 
§  We can normalize Sn: 

§  The distribution for S*
n is the 

standardized normal distribution 
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S⇤
n =

Sn � µ

�/
p

n

CLT and Confidence Interval 
§  1-α confidence interval 

w Range where with P=1-α lies µX 
w P( |µX - s| < e) ≥ 1-α 
w Typically expressed as: s ± e 

§  What is the required sample size (n) to 
achieve a fixed e ? 

§  CLT allows using the empirical rule 
w E.g. for the 95% CI: 
w Therefore 
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s̄± 2�S

e = 2�S = 2
�Xp
n



Sample size and CLT 
§  Sampling voters in favor / against a 

given option 
w p = real proportion of voters in favor 
w Items (0,1) are binomially distributed 
w µX= 1*p + 0*(1-p) = p 
w σX= √p*(1-p)  ≤ √¼ = ½ 
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Sample size and CLT 
§  The distribution of s is approximately 

normal 
§  A 95% interval is: 
§  Therefore: 

w That is: 

70 
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Sample size and CLT 
§  In practice: 

w Fix the confidence interval 
w Find the required minimum sample size 
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95% CI 99% CI 
±5% 400 900 
±3% 1,111 2,500 
±1% 10,000 22,500 

Student’s t distribution 
§  Given a sample {x1…xi …} of size n from 

a normally distributed population, with 
mean x and standard deviation s 

§  The t value is defined as: 

§  Student’s t distribution with n-1 degrees 
of freedom describe the distribution of t 
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t =
x̄� µ
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Student’s t distribution 
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Student’s t distribution 
§  Complements the CLT when 

w Small sample sizes 
w But drawn from a normal distribution 

§  For large sample sizes tends to a 
normal distribution 
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Table of Critical Values of t 
df t0.100 t0.050 t0.025 t0.010 t0.005 
1 3.078 6.314 12.706 31.821 63.656 
2 1.886 2.920 4.303 6.965 9.925 
3 1.638 2.353 3.182 4.541 5.841 
4 1.533 2.132 2.776 3.747 4.604 
5 1.476 2.015 2.571 3.365 4.032 

23 1.319 1.714 2.069 2.500 2.807 
24 1.318 1.711 2.064 2.492 2.797 
25 1.316 1.708 2.060 2.485 2.787 

29 1.311 1.699 2.045 2.462 2.756 
30 1.310 1.697 2.042 2.457 2.750 

40 1.303 1.684 2.021 2.423 2.704 
60 1.296 1.671 2.000 2.390 2.660 

120 1.289 1.658 1.980 2.358 2.617 
1.282 1.645 1.960 2.327 2.576 ∞

tα 

α 

0 

With df = 24 and  
 α = 0.05, tα = 1.711. 

Finite population 
§  CLT valid for infinite populations 

w Holds well for populations large w.r.t. 
sample size 

§  If the population is small, use the 
Finite Population Correction factor 
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fpc =
r

N � n

N � 1

N = population size 
n = sample size 



Sampling 
§  Population 

w The universe of entities 
– People, objects or any item 

§  Sample 
w A subset of the population 

§  Census 
w Data from the entire population 
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Parameter vs statistic 
§  Parameter: feature of population 

w µ: mean 
w σ: standard deviation 

§  Statistic: feature of the sample 
w x: mean 
w s: standard deviation 
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Parameters and statistics 
§  Mean 

 
§  Standard deviation 
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µ ⇠ x =
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HYPOTHESIS TESTING 
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Types of Hypotheses 
§  Research Hypothesis 

w a statement of what the researcher believes 
will be the outcome of an experiment or a 
study. 

§  Statistical Hypotheses 
w a more formal structure derived from the 

research hypothesis. 
§  Substantive Hypotheses 

w a statistically significant difference does not 
imply or mean a material, substantive 
difference.  
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Statistical Hypothesis testing 
Assuming that the null 

hypothesis is true, what is the 
probability of observing a value 
for the test statistic that is at 
least as extreme as the value 
that was actually observed? 
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Steps 
1.  Establish hypotheses  

w   state the null and alternative hypotheses. 
2.  Determine the appropriate statistical test 

and sampling distribution. 
3.  Specify the Type I error rate (α).
4.  State the decision rule. 
5.  Gather sample data. 
6.  Calculate the value of the test statistic. 
7.  State the statistical conclusion. 
8.  Make a managerial decision. 

H 

T 

A 
B 

One sample 
§  H0: µ = 0 

§  Given a sample of n elements 
w Be s the sample standard deviation 
w The t value is distributed according the 

the Student’s t distribution with n-1 
degrees of freedom 
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One Sample - Example 
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§  Samples n = 20 
§  x = 0.473 
§  s = 1.645 

§  Critical value c.r = ±2.093 
w qt(1-α/2,n-1) 

ts =
x̄� µ

s/

p
n

=
0.473� 0
1.645/

p
20

= 1.287

One Sample - Example 
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One sample - Example 
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One sample - Example 
§  Rejection decision criteria: 

w tS > critical value 
– 1.287 > 2.093 è fail to reject 

w p-value < α 
– 0.213 < 0.05 è fail to reject 

§  t.test(samples,mu=0) 
w t = 1.2873, df = 19, p-value = 0.2134 
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One sample - Example 
§  Confidence interval 

w The theoretical range of µ within which H0 
cannot be rejected 
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1-α CI 

x̄� µ

s/

p
n

= ±critical

0.473� µ

1.645/
p

20
= ±2.093

µ = 0.473 ± 2.093 · 1.645p
20

= [�0.297; 1.243]

One sample  
§  H0: µ = µ0 

§  Fail to reject H0 ó 

§  Reject H0 ó 
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One- vs. Two-tailed tests 
§  Un-directional hypothesis 

w H0: µ = 0 
w Ha: µ ≠ 0 

§  Directional hypothesis 
w H0: µ ≤ 0 
w Ha: µ > 0 
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One- vs. Two-tailed tests 
§  One-tailed test makes it "easier" to 

reject the null hypothesis  
w The critical area is larger 
w The critical value is closer to the mean 
w The p-values is divided by two 
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One-tailed or two-tailed? 
§  If Ha simply says the two means will be 

different, but doesn't predict a 
direction to the difference, then you 
would use the two-tailed t-test value 
for comparison with the critical value  

§  If Ha predicts a difference in a 
particular direction (one mean will be 
larger than the other), then you would 
use a one-tailed t-test 
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Two-samples 
§  Often the hypotheses compare 

measures from two different samples 
w Typically two levels of the main factor 

–  i.e. with and without the treatment 
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Sampling 
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Population A 
samples 

Population B 

A B 
155 169 
160 173 
165 176 
166 178 
167 179 
168 181 
170 182 
182 193 

Sampling 
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Two sample t-test 
§  t.test( response ~ factor,  
        data=d) 
w alternative =  

– c( "two.sided", "less", "greater"),  
w mu = 0 
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NONPARAMETRIC TESTS 



Parametric  vs. Nonparametric 
§  Parametric tests are based on 

assumptions: 
w data being analyzed are randomly selected 

from a normally distributed population.  
w quantitative measurement that yield interval 

or ratio level data. 
§  Nonparametric tests require fewer 

assumptions 
w Sometimes  called “distribution-free” 

statistics. 
w Techniques available for use with nominal or 

ordinal data. 
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Pros of Nonparametric 
§  Sometimes there is no parametric alternative 

to the use of nonparametric statistics. 
§  Can be used to analyze 

w  nominal data. 
w  ordinal data. 

§  Computation less complicated than 
parametric statistics 
w  particularly for small samples. 

§  Probability statements obtained from most 
nonparametric tests are exact probabilities. 
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Cons of Nonparametric 
§  Can be wasteful of data if parametric 

tests are available 
§  Not as widely available and well known 

as parametric tests. 
§  For large samples, the calculations for 

many nonparametric statistics can be 
tedious. 
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Wilcoxon signed rank test 
§  Nonparametric alternative to one 

sample t test 
w Paired difference test 
w Also one sample test 

§  Procedure 
w Ri = Rank | Xi – θ | 
w Sum the ranks of positive Xi – θ 
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W+ =
nX

i=1

�iRi �i =

(
0 if Xi � ✓ < 0
1 if Xi � ✓ > 0



Wilcoxon signed rank test 
§  Expected value if θ is median: 

w W =  

§  One sample:  
w wilcox.test(x) 

§  Two samples:  
w wilcox.test(x,y,paired=T) 
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n(n + 1)
4

Wilcoxon signed rank test 
§  Nonparametric alternative to one 

sample t test 
w H0: median = θ 

§  One sample:  
w wilcox.test(x) 

§  Two samples (paired differences): 
w wilcox.test(x,y,paired=T) 
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Wilcoxon signed rank test 
§  Procedure 

w Remove all Xi = θ  
w Ri = Rank | Xi – θ | 
w Φi = sign( Xi – θ ) 

§  W is normally distributed (for large N) 
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z =
W � 0.5

�W
, �W =

r
N(N + 1)(2N + 1)

6

W =
NX

i=1

�i · Ri

Mann-Whitney U Test 
§  Nonparametric counterpart of the t 

test for independent samples 
§  Does not require normally distributed 

populations 
§  Assumptions 

w Independent Samples 
w At Least Ordinal Data 
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Mann-Whitney U Test: samples 
§  Size of samples: n1, n2 
§  If both n1 and n2 are ≤ 10, the small 

sample procedure is appropriate. 
§  If either n1 or n2 is greater than 10, 

the large sample procedure is 
appropriate. 
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MW Test 
§  Small samples:  

w For each item in sample a count how may 
items of sample b have lower rank 

w Sum all the values 
§  Large samples: minimum Us 
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Us =
X

Rsi �
ns(ns + 1)

2



MW Test 
§  Use the smallest U for computation 
§  Normal approximation for N>20 

§  For small N tables are available 
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z =
U � n1n2

2

�U
, �U =

r
n1n2(n1 + n2 + 1)

12

MW Test 
§  Assign a rank to the  

 union of the samples 
w a = ( 4, 7, 3, 5 ) 
w b = ( 6, 9, 12, 10 ) 
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sample values rank 
a 3 1 
a 4 2 
a 5 3 
b 6 4 
a 7 5 
b 9 6 
b 10 7 
b 12 8 

Ub = (4 + 6 + 7 + 8)� 4 · (4 + 1)
2

= 15

Ua = (1 + 2 + 3 + 5)� 4 · (4 + 1)
2

= 1

z =
1� 4·4

2q
4·4·(4+4+1)

12

=
7p
12

= �2.02
p-value = 0.043 



Nominal metrics tests 
§  Pearson Chi Squared test 

w Independence of nominal variables 
– Contingency table 

w Difference in distribution frequencies 
– Table with paired distributions (?bind) 

w Goodness of fit 
§  Fisher exact test 

w In 2x2 or 3x3 cases 
w Small samples 
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Pearson Chi Squared test 
§  Comparing observed frequencies to 

expected ones 
§  Test statistic: 

w Asymptotically approaches a χ2 
distribution with n-p degrees of freedom 

w p = number of parameters - 1 
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X2 =
nX

i=1

(Oi � Ei)2

Ei



Chi-squared test 

L M H 

L f1,1 f1,2 f1,3 m1,* 

M f2,1 f2,2 f2,3 m2,* 

H f3,1 f3,2 f3,3 m3,* 

m*,1 m*,2 m*,3 N 
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Variable 2 
Va

ria
bl

e 
1 

Marginals 

Pearson chi squared test 
§  Expected values in case of 

independent variables 

 
w # parameters: c + r 
w Degrees of freedom df = N – (c + r-1)  

– Since N=c*r, df = (c-1)(r-1) 

§  chisq.test(t)  
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Ei,j =
mi,⇤ · m⇤,j

N



2x2 Contingency 
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Correct Wrong 

+ f+,C f+,W n+ 

- f-,C f-,W n- 

nC nW N 

Outcome 
Tr

ea
tm

en
t 

Odds vs. Proportions 
§  Proportions 

w Correct with treatment +: 
w Correct with treatment -: 

§  Odds 
w Correct vs. wrong with treatment +: 
w Correct vs. wrong with treatment -: 

§  Odds ratio: 
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f+,C

f+,C + f+,W

f�,C

f�,C + f�,W

f�,C

f�,W

f+,C

f+,W
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Fisher exact test 
§  H0: OR = 1 

w p-value: probability of observing at least 
as such an extreme OR given the 
observed marginals 

§  fisher.test(t) 
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Multiple comparisons 
§  As the number of comparisons increases, 

it becomes more likely that the groups 
being compared will appear to differ in 
terms of at least one attribute. 

§  Family-wise error rate 
w αFW = 1 – (1-αc)n 

§  Bonferroni correction 
w Setting: αc=α/n 
w  Implies: αFW ≤ α 
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ANALYSIS OF VARIANCE 
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Purpose 
§  Compare more than two populations 

(instead of just two populations as 
done with the t-test) 
w Several possible levels for the main factor 

– One-way 
w Used when to analyze the effect of 

different factors on the dependent 
variable 
– N-way 
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Assumptions 
§  Observations are drawn from normally 

distributed populations 
§  Observations represent random 

samples from the populations 
§  Homoscedasticity: variances of the 

populations are equal 

Sum of squares 
§  Random effect model 

w Yij = µ + Bi + Wij   
§  Sum of squares 
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SST =
X

i

X

j

(Yij � Ȳ )2

Treatment SS 
Between treatments SS 

Error SS 
Within treatments SS 

SST =
X

j

nj(Ȳj � Ȳ )2

| {z }
SSC

+
X

j

X

i

(Yij � Ȳj)2

| {z }
SSE



ANOVA 
§  Between treatment variance:  

w MSC = SSC/dfC 
– dfc = #levels - 1 

§  Within treatment variance: 
w MSE = SSE/dfE 

– dfE = N - #levels 

§  F = MSC / MSE 
w F follows an F-distribution 
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ANOVA 
§  AOV 

w aov( output ~ factor, data=data) 

§  ANOVA test 
w summary(aov(output ~ factor,…)) 
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Two-way ANOVA 
§  Blocked design 

w SST = SSC + SSR + SSE 
w aov( output ~ factor + block,…) 
w Factor and block are independent 

§  Factorial design 
w aov( output ~ factor1*factor2,…) 
w Factors are not independent 
w The may be interaction 
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Interaction diagram 
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§  Kabacoff. “R in Action”, Manning, 2011 

§  Lots of online resources 
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