Data analysis and the R statistical package

Empirical Methods in Software Engineering (01OPJIU)

http://softeng.polito.it/EMSE/

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. To view a copy of this license, visit <u>http://creativecommons.org/licenses/by-nc-nd/4.0/</u>. You are free: to copy, distribute, display, and perform the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or licensor.

Non-commercial. You may not use this work for commercial purposes.

No Derivative Works. You may not alter, transform, or build upon this work.

- For any reuse or distribution, you must make clear to others the license terms of this work.
- Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

Agenda

- R statistical package
- Distributions
 - Functions
 - Central Limit Theorem
- Hypothesis testing
 - One sample
 - Two samples
 - Nonparametric tests
 - ANOVA

R STATISTICAL PACKAGE

SoftEng

What is R?

http://cran.r-project.org/

- R is a free software environment for statistical computing and graphics.
 - Available on several different platform

CLI

- Command Line Interface
 - Immediate evaluation of expression
- Scripts
- Extensive help system
 - http://www.rseek.org/

SoftEng

GUI

- Several GUI front-ends
- RStudio is a full IDE for R
 - http://www.rstudio.com

R elements

- Functions
- Data types
 - Primitive
 - Compound

SoftEng

Functions

Definition

* percentage <function(part,whole) {
 part / whole * 100;
}</pre>

Usual invocation (positional)

```
• percentage(3, 4)
```

Named arguments

• percentage(whole=4, part=3)

Data types

- Primitive
- Compound
- Type functions:
 - Type of variable: class (x)
 - Check type: is.type(x)
 - Conversion: as.type(x)

SoftEng

Primitive types

- Numeric
 - Default type
- Integer
- Complex
 - * sqrt(1 + 0i) \rightarrow 0 + 1i
- Logical
 - ◆ TRUE | FALSE
- Character
 - Strings

SoftEng.

Compound types

- Vector
 - Creation: v = c(2,4,5) - Everything is vector: 1 == c(1)
 - Sequences: v = seq(from=1,to=2,by=0.1)
 v = rep(1,time=10)
 - Range: 1:3 equals to c(1,2,3)
 - Merging: m = c (v1, v2)
 Type coercion can be applied
 - Arithmetic
 - Pair-wise on same-index elements
 - Recycling if different size
 - Longest length must be multiple of smallest length

SoftEng

SOftEng

13

Compound types

s = c("aa", "bb", "cc", "dd", "ee") Vector index Operator [] - Simple index: $s[3] \rightarrow$ "cc" - Slicing vector index: $s[c(1,3)] \rightarrow aa'' cc''$ -s[c(5,1,1,3)] → "ee" "aa" "aa" "cc" - Logical vector: s[1] → "aa" "ee" -1 = c(TRUE, FALSE, FALSE, FALSE, TRUE) Named vectors - names(s)=c("First","2nd","3rd","4th","Last") 2nd 3rd First 4th Last "aa" "bb" "cc" "dd" "ee"

Compound types

Compound types

- List
 - An array whose elements can be either primitive or compound types
 - Construction: 1 = list(c(1,2), "a")
 - Slicing: 1[2] → [[1]]
 [1] "a"
 - Member: 1[[1]] → [1] 1 2
 - Named members:
 - Definition: l=list(n=c(1,2), char="a")
 - Access: l\$n == l[["n"]] == l[[1]]

Compound types

- Factor
 Represent nominal and ordinal variables

 Internally stored as integer vector
 x = c("A", "B", "B", "D", "A", "D")
 Create: f= factor(x,

 levels=c("A", "B", "C", "D"),
 ordered=T)

 Levels: levels(f)
 - Frequencies: table(f)

SoftEng

mpg cyl disp hp Compour Mazda RX4 21.0 160 110 6 Mazda RX4 Waq 21.0 160 110 6 Dataframe List of vectors of equal length • Construction: df = data.frame(...) Cell indexing: df[1,2] Column selection: -df[[1]] == df[["mqp"] == df\$mpq Dataframe slicing - Column: df[1] == df["mpg"] -Row: df[1,]== df["Mazda RX4",] == df[,c(TRUE,FALSE)]

Import

- read.*
 - Read data from a file into a dataframe
 - Space separated: read.table()
 - * CSV: read.csv()
 - Clipboard: read.table(pipe(...))
 - -X11: "clipboard"
 - OS X: "pbpaste"
 - Excel file
 - -library(gdata)
 - read.xls()

SoftEng

Diagrams

Diagrams

DATA FRAMES

SoftEng

23

Data frame

Variables and Categories

- Outcome of experiment or questionnaire consist of several observations
- Each observation is characterized by
 - Quantitative values → the measure of interest
 - Categorical values \rightarrow
 - Factors, groups, and blocks
 - Name of variables

SoftEng

Example

 G.Scanniello, F.Ricca, M.Torchiano, G.Reggio, E.Astesiano "Assessing the Effect of Screen Mockups on the Comprehension of Functional Requirements" ACM TRANSACTIONS ON SOFTWARE ENGINEERING AND METHODOLOGY, Vol.24, pp. 1:1-1:38, 2014

Item		Valid			
ID	Question	Answers			
PQ1	I had enough time to perform the tasks.	(1-5)			
PQ2	The questions of the comprehension questionnaire were clear to me.	(1-5)			
PQ3	I did not have any issue in comprehending the use cases.	(1-5)			
PQ4	I did not have any issue in comprehending the use case diagrams.	(1-5)			
PQ5	I found the exercise useful.	(1-5)			
PQ6	I found screen mockups useful (when present)	(1-5)			
PQ7	To see the screen mockups (when present), I spent (in terms of percentage) with respect to the total time to accomplish the task.	(A-E)			
(1) strongly agree, (2) agree, (3) neither agree nor disagree, (4) disagree, (5) strongly disagree.					
(A) < 20%, (B) > 20% and \leq 40%, (C) > 40% and \leq 60%, (D) > 60% and \leq 80%, (E) \geq 80%					

Table VI. Postexperiment Survey Questionnaire

-The requirements specification documents in electronic format (MS Word) of Easy-

27

Wide Format

Exp	Subject	Group	Q1	Q2	Q3	Q4	Q5	Q6	Q7
1	101	1	1	3	1	1	1	2	5
1	104	1	1	3	2	2	1	2	3
1	108	1	1	3	4	4	1	1	2
1	112	1	1	3	2	2	1	1	3
1	116	1	2	3	2	3	1	2	1
1	120	1	1	2	2	2	1	1	4
1	122	1	1	2	1	2	1	1	2

Wide Format

Exp	Subject	Group	Q 1	Q2	Q3	Q4	Q5	Q6	Q7
1	101	1	1	1	1	1	1	2	5
	104	1	1	R	2	2	1	2	3
	ID vars	1	1	M	easu	re va	rs	1	2
1	112	1	1	3	2	2	1	1	3
1	116	1	2	3	2	3	1	2	1
1	120	1	1	2	2	2	1	1	4
1	122	1	1	2	1	2	1	1	2

SoftEng

29

Long Format

Exp	Subject	Group	variable	value
1	101	1	Q1	1
1	104	1	Q1	1
1	108	1	Q1	1
1	112	1	Q1	1
1	116	1	Q1	2
1	120	1	Q1	1
1	122	1	Q1	1

Conversion

SoftEng

Example

- Data from
 - Are Fit Tables Really Talking?

 A Series of Experiments to Understand whether Fit Tables are Useful during Evolution Tasks
 - <u>http://www.rcost.unisannio.it/mdipenta/</u>
 <u>Fit-Package.zip</u>

DISTRIBUTIONS

SoftEng

Distributions

- Probability distribution describes the probability of a random variable to assume certain values
 - Discrete
 - Continuous

Measures of Shape

- Skewness: absence of symmetry
 - Extreme values in one side of a distribution
- Kurtosis: peakedness of a distribution
 - Leptokurtic: high and thin
 - Mesokurtic: normal shape
 - Platykurtic: flat and spread out

Coefficient of Skewness

- S: Summary measure for skewness
- library(moments)
 - S = skewness(x)
 - If S < 0, the distribution is negatively skewed (skewed to the left).
 - If S = 0, the distribution is symmetric (not skewed).
 - If S > 0, the distribution is positively skewed (skewed to the right).

Kurtosis

Kurtosis

- K: measure of kurtosis
 - library(moments)
 kurtosis(x)
 - K > 0: leptokurtic
 - K = 0: mesokurtic
 - K < 0: platykurtic

Discrete distribution

- Absolute Frequency
 - *table(v)
 - barplot(table(v))
- Relative frequency
 - * table(v) / length(v)
- Cumulative frequency
 - cumsum(table(v))
 - Meaningful for at least ordinal data

SoftEng

Density + Cumulative

Binomial

- Describes the outcome of n independent trials in an experiment. Each trial is assumed to have only two outcome, labeled as success or failure
 - Probability of having x successful trials

SoftEng

Binomial - PMF

Binomial – PMF

Binomial – Example

- Ten multiple choice questions in a quiz. Each question has five possible answers, and only one of them is correct.
- Find the probability of having four or less correct answers if a student attempts to answer every question at random.

```
• pbinom(4, size=10, prob=1/5)
```

Binomial – CDF

Poisson

 Distribution of independent events occurrence in an interval. If λ is the mean occurrence per interval.

Normal

- Continuous distribution
- Symmetrical distribution
- Asymptotic to the horizontal axis
- Unimodal
- A family of curves
- Area under the curve sums to 1.

Normal

OftEng

SoftEng.polito.it

• Equation: $f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$

- μ = mean of X
- σ = standard deviation of X

Normal

SoftEng

51

Standardized Normal

- Distribution with
 - a mean of zero, and
 - a standard deviation of one
- Z Formula
 - standardizes any normal distribution
- Z Score
 - computed by the Z Formula
 - the number of standard deviations which a value is away from the mean

$1-\alpha$ confidence interval

SoftEng

53

$1-\alpha$ confidence interval

Summary of confidence levels

Confidence Level	Z Value
90%	1.645
95%	1.96
98%	2.326
99%	2.576

Empirical rule

- Almost all the data fall within 3 standard deviations (Z=3) of the mean
- 95% of the data fall within 2 standard deviations (Z=2) of the mean
- Two thirds of the data falls within one standard deviation (Z=1) of the mean

Empirical rule and CDF

Distributions in R

- ddistr(x, size, prob, log=F)
- pdistr(q, size, prob, lower.tail=T, log.p=F)
- qdistr(p, size, prob, lower.tail=T, log.p=F)
- rdistr(n, size, prob)

binom	Binomial
pois	Poisson
 unif	Uniform
exp	Exponential
norm	Normal
t	Student t

SoftEng.

Checking for normality

Shapiro-Wilk test
 H₀: sample drawn from normal population
 > shapiro.test(x)
 Shapiro-Wilk normality test
 data: x
 W = 0.9893, p-value = 0.6092

Chi squared distribution

- Distribution of the sum of the square of k independent normal variables
 - Degrees of freedom df = k

CENTRAL LIMIT THEOREM

Central Limit Theorem

 The random variable S_n that is constructed as the mean of a sample of size n of independent and identically distributed random variables

$$S_n = \frac{1}{n} \sum X_i$$

- For *large* values of n, the distribution of S_n is approximately normal with
 - Mean: $\mu_S = \mu_X$
 - Standard deviation: $\sigma_S = \frac{\sigma_X}{\sqrt{n}}$

SoftEng

CLT

- The result is independent of the actual distribution of the original random variables
- The result is (mostly) independent of the size of the population
- The "precision" of the mean estimate depends on the sample size

CLT - normalized form

• We can normalize S_n:

$$S_n^* = \frac{S_n - \mu}{\sigma / \sqrt{n}}$$

 The distribution for S^{*}_n is the standardized normal distribution

SoftEng

CLT and Confidence Interval

- 1-α confidence interval
 - Range where with $P=1-\alpha$ lies μ_X
 - P($|\mu_{\chi} s| < e) \ge 1-\alpha$
 - Typically expressed as: $\overline{s} \pm e$
- What is the required sample size (n) to achieve a fixed e?
- CLT allows using the empirical rule
 - + E.g. for the 95% CI: $ar{s}\pm 2\sigma_S$

$$e = 2\sigma_S = 2\frac{\sigma_X}{\sqrt{n}}$$

SoftEng

Therefore

Sample size and CLT

- Sampling voters in favor / against a given option
 - p = real proportion of voters in favor
 - Items (0,1) are binomially distributed

•
$$\mu_{\chi} = 1 * p + 0 * (1-p) = p$$

•
$$\sigma_{\chi} = \sqrt{p^*(1-p)} \leq \sqrt{\frac{1}{4}} = \frac{1}{2}$$

SoftEng

Sample size and CLT

- The distribution of s̄ is approximately normal
- A 95% interval is: $ar{s}\pm 2\sigma_S$

Binomial

69

• Therefore:
$$e > 2\sigma_S = 2\frac{\sigma_X}{\sqrt{n}} > 2\frac{1/2}{\sqrt{n}} = \frac{1}{\sqrt{n}}$$

• That is: $n_{95\%CI} > \frac{1}{e^2}$ $n_{99\%CI} > \frac{9}{4e^2}$

SoftEng.polito.it

Sample size and CLT

- In practice:
 - Fix the confidence interval
 - Find the required minimum sample size

	95% CI	99% CI
±5%	400	900
±3%	1,111	2,500
±1%	10,000	22,500

71

Student's t distribution

- Given a sample {x₁...x_i...} of size *n* from a normally distributed population, with mean x̄ and standard deviation s
- The t value is defined as:

$$t = \frac{\bar{x} - \mu}{s/\sqrt{n}}$$

 Student's t distribution with n-1 degrees of freedom describe the distribution of t

Student's t distribution

- Complements the CLT when
 - Small sample sizes
 - But drawn from a normal distribution
- For large sample sizes tends to a normal distribution

Table of Critical Values of t

df	t 0.100	t 0.050	t 0.025	t 0.010	t 0.005
1	3.078	6.: 14	12.706	31.821	63.656
2	1.886	2. <mark>9</mark> 20	4.303	6.965	9.925
3	1.638	2.3 <mark>5</mark> 3	3.182	4.541	5.841
4	1.533	2.1 <mark>32</mark>	2.776	3.747	4.604
5	1.476	2.(<mark>1</mark> 5	2.571	3.365	4.032
		1			
23	1.319	1.714	2.069	2.500	2.807
24	1.010	1.711	2.064	2.492	2.797
25	1.316	1.708	2.060	2.485	2.787
29	1.311	1.699	2.045	2.462	2.756
30	1.310	1.697	2.042	2.457	2.750
40	1.303	1.684	2.021	2.423	2.704
60	1.296	1.671	2.000	2.390	2.660
120	1.289	1.658	1.980	2.358	2.617
ο I	1.282	1.645	1.960	2.327	2.576

SOftEng

Finite population

- CLT valid for infinite populations
 - Holds well for populations large w.r.t. sample size
- If the population is small, use the **Finite Population Correction factor**

$$fpc = \sqrt{\frac{N-n}{N-1}}$$

N = population size n =sample size

75

Sampling

- Population
 - The universe of entities
 - People, objects or any item
- Sample
 - A subset of the population
- Census
 - Data from the entire population

SoftEng

77

Parameter vs statistic

- Parameter: feature of population
 - µ: mean
 - $\bullet \sigma$: standard deviation
- Statistic: feature of the sample
 - x: mean
 - s: standard deviation

Parameters and statistics

Mean

$$\mu \sim \overline{x} = \frac{1}{n} \sum_{i=0}^{n} x_i$$

Standard deviation

$$\sigma = \sqrt{\frac{1}{N-1} \sum_{i=0}^{n} (x_i - \overline{x})^2} \quad s = \sqrt{\frac{1}{N} \sum_{i=0}^{n} (x_i - \overline{x})^2}$$

79

HYPOTHESIS TESTING

Types of Hypotheses

- Research Hypothesis
 - a statement of what the researcher believes will be the outcome of an experiment or a study.
- Statistical Hypotheses
 - a more formal structure derived from the research hypothesis.
- Substantive Hypotheses
 - a statistically significant difference does not imply or mean a material, substantive difference.

SoftEng

Statistical Hypothesis testing

Assuming that the null hypothesis is true, what is the probability of observing a value for the test statistic that is at least as extreme as the value that was actually observed?

Steps

- state the null and alternative hypotheses.
- 2. Determine the appropriate statistical test T _ 3. Specify the Type I error rate (α).
 4. State the decision rule.
 5. Gather sample data.
- $A = \begin{cases} 6. & \text{Calculate the value of the test statistic.} \\ 7. & \text{State the statistical conclusion.} \end{cases}$

 - **8.** Make a managerial decision.

SOftEng

One sample

- $H_0: \mu = 0$
- Given a sample of n elements
 - Be s the sample standard deviation
 - The t value is distributed according the the Student's t distribution with n-1degrees of freedom

One Sample – Example

- Samples n = 20
- x = 0.473
- s = 1.645

$$t_s = \frac{\bar{x} - \mu}{s/\sqrt{n}} = \frac{0.473 - 0}{1.645/\sqrt{20}} = 1.287$$

Critical value c.r = ±2.093 • qt $(1-\alpha/2, n-1)$

SoftEng

One Sample – Example

One sample – Example

One sample – Example

- Rejection decision criteria:
 - t_s > critical value
 -1.287 > 2.093 → fail to reject
 - p-value < α
 0.213 < 0.05 → fail to reject
- t.test(samples,mu=0)
 - ◆ t = 1.2873, df = 19, p-value = 0.2134

One sample – Example

• Confidence interval • The theoretical range of μ within which H₀ cannot be rejected $\frac{\bar{x} - \mu}{s/\sqrt{n}} = \pm \text{critical}$ $\frac{0.473 - \mu}{1.645/\sqrt{20}} = \pm 2.093$ $\mu = 0.473 \pm \frac{2.093 \cdot 1.645}{\sqrt{20}} = [-0.297; 1.243]$ $1 - \alpha \text{ Cl}}$

One sample

- $H_0: \mu = \mu_0$
- Fail to reject $H_0 \Leftrightarrow \mu_0 \in CI$
- Reject $H_0 \Leftrightarrow \mu_0 \notin CI$

One- vs. Two-tailed tests

- One-tailed test makes it "easier" to reject the null hypothesis
 - The critical area is larger
 - The critical value is closer to the mean
 - The p-values is divided by two

One-tailed or two-tailed?

- If H_a simply says the two means will be different, but doesn't predict a direction to the difference, then you would use the two-tailed t-test value for comparison with the critical value
- If H_a predicts a difference in a particular direction (one mean will be larger than the other), then you would use a one-tailed t-test

SoftEng

93

Two-samples

- Often the hypotheses compare measures from two different samples
 - Typically two levels of the main factor
 i.e. with and without the treatment

SoftEng

95

Sampling Population A $\overbrace{000}^{000}$ $\overbrace{000}^{000}$ $\overbrace{000}^{000}$ $\overbrace{000}^{000}$ $\overbrace{000}^{000}$ $\overbrace{000}^{000}$ $\overbrace{000}^{000}$ $\overbrace{000}^{000}$ $\overbrace{000}^{000}$ $\overbrace{000}^{000}$

Unique Population

* alternative =
 -c("two.sided", "less", "greater"),
* mu = 0

SoftEng.

97

NONPARAMETRIC TESTS

Parametric vs. Nonparametric

- Parametric tests are based on assumptions:
 - data being analyzed are randomly selected from a normally distributed population.
 - quantitative measurement that yield interval or ratio level data.
- Nonparametric tests require fewer assumptions
 - Sometimes called "distribution-free" statistics.
 - Techniques available for use with nominal or ordinal data.

SoftEng

99

Pros of Nonparametric

- Sometimes there is no parametric alternative to the use of nonparametric statistics.
- Can be used to analyze
 - nominal data.
 - ordinal data.
- Computation less complicated than parametric statistics
 - particularly for small samples.
- Probability statements obtained from most nonparametric tests are exact probabilities.

Cons of Nonparametric

- Can be wasteful of data if parametric tests are available
- Not as widely available and well known as parametric tests.
- For large samples, the calculations for many nonparametric statistics can be tedious.

SoftEng

101

Wilcoxon signed rank test

- Nonparametric alternative to one sample t test
 - Paired difference test
 - Also one sample test
- Procedure
 - $R_i = Rank \mid X_i \theta \mid$
 - Sum the ranks of positive $X_i \theta$

$$W_{+} = \sum_{i=1}^{N} \phi_{i} R_{i} \qquad \phi_{i} = \begin{cases} 0 \text{ if } X_{i} - \theta < 0\\ 1 \text{ if } X_{i} - \theta > 0 \end{cases}$$

SoftEng.

Wilcoxon signed rank test

Expected value if θ is median: • W = $\frac{n(n+1)}{\Lambda}$

- One sample:
 - * wilcox.test(x)
- Two samples:
 - * wilcox.test(x,y,paired=T)

SOftEng

103

Wilcoxon signed rank test

- Nonparametric alternative to one sample t test
 - H_0 : median = θ
- One sample:
 - * wilcox.test(x)
- Two samples (paired differences):
 - * wilcox.test(x,y,paired=T)

Wilcoxon signed rank test

Procedure

Remove all X_i = θ
R_i = Rank | X_i - θ |
Φ_i = sign(X_i - θ)

W is normally distributed (for large N)
z = ^{W - 0.5}/_{σ_W}, σ_W = √^{N(N+1)(2N+1)}/₆

SoftEng

105

Mann-Whitney U Test

- Nonparametric counterpart of the t test for independent samples
- Does not require normally distributed populations
- Assumptions
 - Independent Samples
 - At Least Ordinal Data

Mann-Whitney U Test: samples

- Size of samples: n1, n2
- If both n1 and n2 are ≤ 10, the small sample procedure is appropriate.
- If either n1 or n2 is greater than 10, the large sample procedure is appropriate.

SoftEng

MW Test

- Small samples:
 - For each item in sample *a* count how may items of sample *b* have lower rank
 - Sum all the values
- Large samples: minimum U_s

$$U_s = \sum R_{si} - \frac{n_s(n_s+1)}{2}$$

- Use the smallest U for computation
- Normal approximation for N>20

$$z = \frac{U - \frac{n_1 n_2}{2}}{\sigma_U}, \sigma_U = \sqrt{\frac{n_1 n_2 (n_1 + n_2 + 1)}{12}}$$

For small N tables are available

SoftEng

	sample	values	rank
MW Test	а	3	1
	a	4	2
	а	5	3
Assign a rank to the	b	6	4
union of the samples	a	7	5
$\mathbf{A} = (\mathbf{A} + \mathbf{Z} + \mathbf{Z} + \mathbf{E})$	b	9	6
$\bullet a = (4, 7, 5, 5)$	b	10	7
◆ b = (6, 9, 12, 10)	b	12	8
$U_a = (1+2+3+5) - \frac{4 \cdot (4+1)}{2}$	$\frac{)}{-} = 1$		
$U_b = (4+6+7+8) - \frac{4 \cdot (4+1)}{2}$ $1 - \frac{4 \cdot 4}{2} = 7$	= 15		
$z = \frac{2}{\sqrt{\frac{4 \cdot 4 \cdot (4+4+1)}{12}}} = \frac{2}{\sqrt{12}} = -2.02$	p-val	ue = 0.0	43
SoftEng			110

Nominal metrics tests

- Pearson Chi Squared test
 - Independence of nominal variables

 Contingency table
 - Difference in distribution frequencies
 Table with paired distributions (?bind)
 - Goodness of fit
- Fisher exact test
 - In 2x2 or 3x3 cases
 - Small samples

SoftEng

Pearson Chi Squared test

 Comparing observed frequencies to expected ones

• Test statistic:
$$X^2 = \sum_{i=1}^{n} \frac{(O_i - E_i)^2}{E_i}$$

- Asymptotically approaches a χ² distribution with n-p degrees of freedom
- p = number of parameters 1

Chi-squared test

Pearson chi squared test

 Expected values in case of independent variables

$$E_{i,j} = \frac{m_{i,*} \cdot m_{*,j}}{N}$$

- # parameters: c + r
- Degrees of freedom df = N (c + r-1)
 Since N=c*r, df = (c-1)(r-1)
- chisq.test(t)

SoftEng.

2x2 Contingency

		Outcor		
		Correct	Wrong	
ment	+	$f_{+,C}$	$f_{+,W}$	n_+
Freati	-	$f_{-,C}$	$f_{-,W}$	n_
		n _c	n _w	Ν

SoftEng

115

Odds vs. Proportions

- Proportions
 - Correct with treatment +: $\frac{f_{+,C}}{f_{+,C} + f_{+,W}}$
 - Correct with treatment –: $\frac{f_{-,C}}{f_{-,C}+f_{-,W}}$
- Odds
 - Correct vs. wrong with treatment +: $\frac{f_{+,C}}{f_{+,W}}$
 - Correct vs. wrong with treatment –: $\frac{f_{-,C}}{f_{-,W}}$
- Odds ratio: $\frac{f_{+,C} \cdot f_{-,W}}{f_{+,W} \cdot f_{-,C}}$

Fisher exact test

- $H_0: OR = 1$
 - p-value: probability of observing at least as such an extreme OR given the observed marginals

fisher.test(t)

SoftEng

117

Multiple comparisons

- As the number of comparisons increases, it becomes more likely that the groups being compared will appear to differ in terms of at least one attribute.
- Family-wise error rate
 - $\bullet \, \alpha_{FW} = \, 1 \, \, (1 \alpha_c)^n$
- Bonferroni correction
 - Setting: $\alpha_c = \alpha/n$
 - Implies: $\alpha_{FW} \leq \alpha$

SoftEng.

ANALYSIS OF VARIANCE

Purpose

- Compare more than two populations (instead of just two populations as done with the t-test)
 - Several possible levels for the main factor
 One-way
 - Used when to analyze the effect of different factors on the dependent variable

- N-way

SoftEng

Assumptions

- Observations are drawn from normally distributed populations
- Observations represent random samples from the populations
- Homoscedasticity: variances of the populations are equal

SoftEng

Sum of squares

• Random effect model • $Y_{ij} = \mu + B_i + W_{ij}$ • Sum of squares $SST = \sum_i \sum_j (Y_{ij} - \bar{Y})^2$ $SST = \sum_j n_j (\bar{Y_j} - \bar{Y})^2 + \sum_j \sum_i (Y_{ij} - \bar{Y_j})^2$ SSCTreatment SS Between treatments SS Between treatments SS SoftEng

ANOVA

- Between treatment variance:
 - MSC = SSC/df_C

 $- df_c = #levels - 1$

- Within treatment variance:
 - MSE = SSE/df_E - df_E = N - #levels
- F = MSC / MSE
 F follows an F-distribution

SoftEng

123

ANOVA

- AOV
 - * aov(output ~ factor, data=data)
- ANOVA test
 - * summary(aov(output ~ factor,...))

Two-way ANOVA

- Blocked design
 - SST = SSC + SSR + SSE
 - * aov(output ~ factor + block,...)
 - Factor and block are independent
- Factorial design
 - * aov(output ~ factor1*factor2,...)
 - Factors are not independent
 - The may be interaction

SoftEng.

Interaction diagram

References

- Kabacoff. "R in Action", Manning, 2011
- Lots of online resources

