
Evaluating 3D-Visualisation of Code Structures in the Context of Reverse
Engineering

Alexander Fronk ∗

Software Technology, University of Dortmund, Germany
Dietmar Gude, Gerhard Rinkenauer

Leibniz Research Centre for Working Environment and Human Factors, University of Dortmund, Germany

Abstract

In reverse engineering it is a common approach to gener-
ate UML diagrams from code, capturing technical details
as well as structural static relations between, e.g., packages
and classes. It can be observed, however, that it is hard
to depict large object-oriented systems in such a way that
particulary unknown legacy code can be visually explored
to comprehend it for effective maintenance. Our contribu-
tion to this task is to use relation-specific geometric arrange-
ments in three-dimensional space. 3D space allows to dis-
play a large amount of data with optimal visual ingress, and
using specific layout algorithms optimises space utilisation
with respect to both exploration and interpretation of the
code structures displayed. So far, we have developed a re-
verse engineering tool, VisMOOS, supporting these ideas by
means of 3D relation diagrams, and in the next step, both
the concepts and the tool require for empirical studies to
evaluate their effectiveness for understanding unknown code
structures. In this project there are three different partners
involved: the Chair for Software Technology of the Univer-
sity of Dortmund, the Leibniz Research Centre for Working
Environment and Human Factors, and an industrial software
developing company. Although we have different interests in
the project, we follow the same goal: How can we empirically
prove the effectiveness of our 3D relation diagram? In this
article, we report on both 3D relation diagrams and how we
are designing and conducting experiments to evaluate them.

1 Underlying Theory and Concepts

In reverse engineering, code structures are usually visu-
alised using UML diagrams within a tool, for example, like
OMONDO. One of the drawbacks of such diagrams heav-
ily under discussion is scalability: large software systems
are hard to depict as one single UML package and class dia-
gram. More seriously, these diagrams need to be split up into
many separate ones or into arbitrary hierarchies such that
important information might be lost or simply overseen.

Reverse engineering is not a stand-alone task. It aims at
visualising code such that the diagrams generated can be
used for, e.g., maintaining a software system (cf. [Lano and
Haughton 1993; Bax ]). Clearly, maintenance tasks require
to understand the system in detail which is a non-trivial
matter particularly for large and unknown legacy code (cf.
[Mayrhauser and Vans 1993]). The diagrams generated by
a reverse engineering tool must thus allow the observer to
gather the information needed and to interpret his/her find-
ings correctly such that maintenance tasks can be carried
out both efficiently and effectively.

∗e-mail: fronk@LS10.de

Figure 1: Package Affiliation

UML class diagram capture technical details such as at-
tribute types and method signatures as well as structural
static relations such as association or inheritance. These
relations, however, are shown simultaneously with similar
icons and without layout respecting, e.g., containment and
tree- or star-like structures. This is what we think aggra-
vates the comprehension of structural interrelations. More-
over, integrating class diagrams into package diagrams de-
livers unusable large ‘paintings’. In our project, however,
we consider Java software systems and stipulate that it is as
necessary, however, to understand structural relations as to
investigate technical details. Hence, we follow the ideas that

1. considering different geometric arrangements for differ-
ent structural relations between source code entities en-
hances code comprehension and offers valuable insight
into structures which, for example, need refactoring,

2. integrating different views, e.g., enriching package di-
agrams with class relations, offers important context
information,

3. exploiting three-dimensional space allows for display-
ing more data on less space than in 2D and offers a
much better visual ingress to the code structures under
consideration.

We have the strong feeling that these aspects help to com-
prehend large and unknown software structures more quickly



Figure 2: Package/Class Integration

Figure 3: Class Association

and accurately than with UML diagrams alone. In detail,
we have elaborated the following 3D relation diagrams (see
Fig. 1 and 2 for package relation diagrams, and 3 and 4 for
class relation diagrams) to highlight different relations be-
tween Java entities by means of different geometric arrange-
ments (cf. [Alfert et al. 2001; Rohr 2004]). That is, we have
assigned well-known three-dimensional visual concepts like
tree-like structures or semi-transparent information cubes
[Rekimoto and Green 1993] to Java entities such that we can
highlight source code relations with respect to their struc-
tural properties:

• Package affiliation diagrams show packages as cylinders
connected by pipes. A pipe from package A to package B
is drawn if in A there is a class or sub-package referring
to a class in B. Simultaneously, the user may access the
interior of a package revealing classes, interfaces, and
sub-packages and their associations which are thus dis-
played within the context of their package affiliations.

• Class association diagrams refer to interfaces and
classes alone leaving their package affiliations away. Us-
ing force-directed layout, entities with many associa-
tions in between are placed closer together than those
with less or none associations.

• Class hierarchy diagrams represent inheritance infor-

Figure 4: Class Hierarchy

mation in a tree-like manner. With a grid-layout, the
subclasses of a class are arranged on a grid underneath
their common superclass. Simultaneously, interfaces
and their inheritance hierarchies drawn under forced-
directed layout enrich the hierarchies such that the ob-
server may instantly capture, firstly, which classes im-
plement which interfaces and, secondly, which interface
hierarchies are in use within which hierarchies.

Particularly in a three-dimensional setting, tool support is
mandatory and must encompass both interaction with and
navigation in a 3D-scene. We have implemented such a tool
supporting the above-mentioned diagrams. It is briefly de-
scribed next.

2 Tool Description

Our tool VisMOOS (Visualisation Methods for Object-
Oriented Software Systems) is tailored for visualising code
structures in Java software systems. VisMOOS uses so-
called visualisation methods to selectively display different
aspects of source code with different geometric arrangements
taking into account criteria for good visual perception. The
tool, firstly, analyses a Java source code using JavaDoc, and,
secondly, generates a structural model. Thereupon, the user
selects a visualisation method to view a 3D-scene render-
ing the structural model using the Java3D technology and
spring embedding algorithms. Each method offers interac-
tion techniques – such as rotation, zoom, fade, elision, or
setting a degree of interest – by which the user can interac-
tively explore the scene to gather information he or she as-
sumes relevant for maintaining the software under considera-
tion. As VisMOOS is a plug-in for Eclipse, it can be utilised
within programmers daily work and integrates into any soft-
ware development process. Particularly for large software
systems, VisMOOS suitably offers a flexible filtering mech-
anism by which the user can reduce the amount of data
displayed or focus on the most essential components he is
interested in. In addition, we consider it helpful to support
the user in exploring a scene by means of user-defined met-
rics. That is, the tool will allow to point on particularly in-
teresting situations using a data-mining approach for graphs
(cf. [Cook and Holder 2000]). So far, we have implemented



Figure 5: Eclipse package affiliation relations

different metrics to quantitatively analyse code structures,
though visualising the analysis results within the scene is
currently not implemented. To explain how to explore a
software system with VisMOOS, we briefly introduce a case
study and discuss some of the aspects that can be discov-
ered in our relation diagrams. The tool can be downloaded
at http://ls10-www.cs.uni-dortmund.de/vise3d.

We are already using VisMOOS in an industrial setting
and can report on positive feedback. With empirical stud-
ies, however, we want to discover why the concepts used in
VisMOOS are effective, and what exactly are the reasons
for their success. That is, we expect an analytical consoli-
dation which a case study alone might not adduce. To give
a first impression of relation diagrams in use, we briefly dis-
cuss a case study before we propose empirical experiments
to analyse cognitive requirements for software maintenance
supported by our reverse engineering tool VisMOOS.

3 A Case Study in Code Structure Visual-
isation: The Eclipse Source Code

Recently, we have explored several software projects of dif-
ferent size: A student project encompassing 26 packages
and 120 classes, an industrial software project encompass-
ing more than 800,000 lines of code arranged in several
hundred packages, classes, and interfaces, and the Open
Source Project ‘Eclipse’ (without considering the Java De-
velopment Toolkit (JDT)) encompassing over 500 packages,
7200 classes, and 1400 interfaces.

In [Fronk et al. 2006], we reported on the Eclipse source
code to which we refer here to explain how to explore un-
known large software systems. We follow a top-down ap-
proach, i.e., we first visualise the dependencies between
the Eclipse packages showing affiliated classes and inter-
faces in an integrated and hierarchically organised pack-
age affiliation diagram (the visualisations printed here and
more useful when viewed within VisMOOS and only serve
as a qualitative impression of the complexity the Eclipse
source code possesses). From the layout of the scene in
Fig. 5 one can deduce that the packages eclipse.ui and
eclipse.core.runtime are the most essential ones: The
classes they contain possess the largest number of associ-
ations to classes in other packages. Most interestingly, the
classes from these two packages mainly communicate with

Figure 6: eclipse.core.runtime package network

each other via classes found in the package ui.internal
which is the package with the largest number of lines of
code (LOC), viz 49898. The packages osgi.framework and
internal.core also form very important communication
nodes, although their size is relatively small: 5924 LOC and
2760 LOC, respectively. From metrics alone, such a finding
could not have been made. A process automatically search-
ing for components that satisfy such constraints is under
work.

In a second step, one may explore the interior of pack-
ages one is interested in. For instance, the sub-packages,
classes, and interfaces found in the ecplise.core.runtime-
package (see Fig. 6) form a very dense association network.
To analyse it from scratch, i.e., without domain-knowledge
about which packages or classes are intended to be used for
which purposes, we consider quantitative properties first.

It is easy to see from the layout again that there are some
classes and interfaces playing a central role, and applying a
suitable filter shows their associations are mostly leading to
classes located within a large variety of packages and out-
side of the ecplise.core.runtime-package. Consequently,
it is a third step to analyse associations omitting the package
affiliation context in order to concentrate either on method
call graphs and thus focus on dynamic properties, or on code
organisation by means of relations between classes and in-
terfaces and thus focus on static properties. It is the latter
that we assume more important when understanding code
structures is on center stage.

Although the class ui.texteditor.AbstractTextEditor
with 4096 LOC is the largest class in the eclipse.ui-
package, it does not constitute the most interesting asso-
ciation network with respect to code organisation. More-
over, running some metrics on the code identifies the class
jface.text.TextViewer to implement 11 interfaces, which
is the largest number of interfaces implemented by a class.
A look at its association network (Fig. 7) with TextViewer
positioned in the center offers a very nice star-like organi-
sation to the interfaces implemented and the classes used.
The latter are almost totally unrelated and implement fur-
ther interfaces.

Sticking to interfaces, metrics show that the inter-
face jface.viewers.IStructuredContentProvider is im-
plemented 83 times, followed by core.runtime.IAdaptable
(55 times) and jface.util.IPropertyChangeListener (53
times). In a forth step, it is interesting to see how class



Figure 7: TextViewer association network

Figure 8: A sample Eclipse class hierarchy

Figure 9: Small portion of all Eclipse class hierarchies

hierarchies are organised and how interface implementa-
tions spread over them. From metrics we learn that the
class jface.action.Action has 275 subclasses, followed by
arg.util.NLS and jface.viewers.LabelProvider with 113
and 110 subclasses, resp. These figures allow to estimate
whether there are a few large hierarchies or many small one,
yet they say nothing about their hight, i.e., whether class hi-
erarchies are flat or rather deep. In Eclipse, there are many
medium-sized hierarchies, and only a few classes have a very
large number of subclasses the organisation of which is nice
to see in class hierarchy diagrams (see, e.g., Fig. 8).

From a class hierarchy diagram displaying all
class hierarchies available, we learn that the classes
jface.action.Action, jface.dialogs.Dialog, and
core.runtime.PlatformObject constitute the most central
hierarchies. Furthermore, since interface implementa-
tion relations are also captured, we can see that the
PlatformObject hierarchy in particular contains many
classes implementing the interface IAdaptable, a fact that
can easily be deduced from layout again: Fig. 9 shows a
lot of green lines representing interface implementation
relations leading from the above-mentioned class hierarchy
to IAdaptable.

4 Facets of Visualisation Evaluation

Software comprehension demands to quickly and precisely
overview relations between software entities. Their visu-
alisation must allow to deduce the information needed for
maintenance. Hence, visualisations can be evaluated at least
considering the following facets embracing syntax and se-
mantics:

Concrete Syntax: The way data are represented should
coincide with what the data mean. That is, a linked
list, for instance, should be represented as such in order
to allow to find structural or logical bugs quickly and
effectively, or different colors should be used to mark
different types of data.

Interpretability: Depending on the specific task, differ-
ent data are needed. For example, debugging re-
quires different data than refactoring. A visualisation
should thus be task-specific and completely offer the
data needed, if available, which in turn should be visu-
alised in such a way they can be interpreted correctly
with respect to the users intention.

Since we use different geometric arrangements for different
kinds of relations between code entities, integrate them with
each other, and use the third dimension simply for having
more space and layout possibilities available, we have the
strong feeling that compared to UML diagrams our relation
diagrams support a better visual ingress on the code struc-
tures displayed and enhance code comprehension for main-
tenance purposes. Nonetheless, we offer at least new insight
into code structures through presenting aggregated informa-
tion on large software systems. With this opinion and from
the above-mentioned facets we can deduce some assumptions
to be tested on our 3D relation diagrams when compared to
the corresponding UML package and class diagrams:

• They allow to memorise more structural aspects better.

• They allow to recognise ni less time more code changes
in the underlying source code carried out by other pro-
grammers.



• They allow to find and recover specific structures more
easily and more accurately.

• They allow to qualitatively assess code structures more
accurately.

• They allow to quantitatively assess code structures
more precisely.

We are planning to conduct a two-step evaluation process
(cf. [Dumas and Redish 1999]). In the first step, the assump-
tions will be evaluated within a preliminary survey to check
whether or not they hold. Simultaneously, we expect to ob-
tain indices about what proves them true or wrong. That
is, the first step will also be a hypotheses-generating study
helping to formulate precise hypotheses such as, e.g.:

• The larger the underlying source code, the more 3D
relation diagrams are superior to UML diagrams.

• Colors support structure memorisation.

• Layout is responsible for structure recognition.

• 3D-space enhances overview on large sets of data.

• The features offered by VisMOOS support code assess-
ment.

In a second step, continuative experiments will empirically
test such and other hypotheses to definitively discover the
reasons why and not or where and where not 3D relation
diagrams work. Currently, we are designing the first step on
which we report in the remainder of this paper.

5 Preliminary Study: Design and Conduc-
tion

We are currently recruiting students from both Bachelor and
Master Programs of Computer Science at the University of
Dortmund. They possess different skills in reading UML
diagrams and none in reading 3D relation diagrams. Both
groups will encompass about 10 students, i.e., there will be
about 20 students available. Before we let them participate
the experiments, a short briefing will introduce them into
reading both UML and 3D relation diagrams. Then, the
students are arbitrarily divided into two groups. In each
experiment, one of the groups will deal with a UML diagram
and the other with a 3D relation diagram to fulfill a given
task. The diagram assignment will be switched from time to
time such that each student will face either diagram type.
Both groups are tool supported: the UML group will use
OMONDO, and the 3D group will use VisMOOS, such that
both groups rely on the Eclipse environment. The groups
are not allowed to use the search-feature of either tool but
to navigate through the diagrams manually.

We are planning to conduct the following experiments:

• A complex diagram is given to the students. They are
asked to look at it for 10 minutes and to gather as much
‘knowledge’ as possible. We do not tell them on what
they should concentrate. After this phase, there will
be a 20 minutes break in which the students are shown
some part of a relaxing movie. After that, they are
asked to write down what they remember. We expect
the UML group to remember technical details in partic-
ular, whereas the 3D group should memorise structural
conspicuities. With this experiment, we want to as-
sess the quality of our visualisation w.r.t. productivity
through commemoration aid.

• Each group is given a complex diagram. They are asked
to look at it for 10 minutes. Then, the groups are given
a set of diagrams showing similar situations. However,
only one diagram is equivalent to the first one except
for some subtle changes in the relations between the
entities shown. The task is to find this diagram. This
experiment aims at structure recognition. We expect
the 3D group to appoint the correct diagram in less
time with a smaller error rate.

• Each group is given a complex diagram. They are asked
to look at it for 10 minutes. Then, each group is given
a list of entities (packages, classes, and interfaces) and
asked to describe the relations between them within
5 minutes times. This experiment aims at orientation
within the code. We expect the 3D group to give more
accurate answers in less time.

• Each group is given a class diagram. The task is to
assess within 5 minutes time the effect the deletion of
a certain method from a specific class will have on the
the source code visualised. This experiment aims at
assessing the relevance of classes in their association
context.

• Each group is given a set of three times three dia-
grams showing three different views on three different
projects. The task is to collate within 5 minutes the
three views belonging to the same project. This exper-
iment aims at evaluating the qualitative assessment of
code structures. We expect the UML group not to pass
this test if package and class names are deleted from
the diagrams, whereas the 3D group is then still able
to fulfill the task. In case the names are not deleted
from the diagram, the UML group may finish this task
slightly faster.

• Each group is asked to add a new feature into the
product visualised through a class diagram containing
classes, abstract classes, and interfaces. The task is to
assess within 3 minutes the cost of this code change by
estimating the number of classes and interfaces affected
by the change and to propose a change strategy (which
class to adapt first to what, and so on). We expect
the 3D group to give more precise answers and propose
better change strategies.

From these experiments we are expecting initial empirical
hints on the quality and effectiveness of our approach ad-
dressing the enhancement of code comprehension for main-
tenance purposes, and whether VisMOOS is supposed to be
a useful reverse engineering tool. Nonetheless, since we al-
ready use the tool in an industrial setting, we can already
report on positive feedback and hope to corroborate it in
this ongoing study.

References

Alfert, K., Fronk, A., and Engelen, F. 2001. Expe-
riences in 3-dimensional visualization of Java class rela-
tions. Transactions of the SDPS: Journal of Integrated
Design and Process Science 5, 3 (Sept.), 91–106.

Cook, D. J., and Holder, L. 2000. Graph-based data
mining. Intelligent Systems and Their Applications 15, 2
(Mar.), 32–41.



Dumas, J., and Redish, J. C. 1999. A Practical Guide to
Usability Testing. Intellect Books.

Fronk, A., Bruckhoff, A., and Kern, M. 2006. 3d vi-
sualisation of code structures in java software systems. In
Proceedings of the ACM Symposium on Software Visuali-
sation, ACM SIGGRAPH, 145–146.

Lano, K., and Haughton, H. 1993. Reverse Engineer-
ing and Software Maintenance: A Practical Approach.
McGraw-Hill, Inc.

Mayrhauser, A., and Vans, A. M. 1993. From code
understanding needs to reverse engineering toolcapabili-
ties. In Proceedings of the 6th International Workshop on
Computer-Aided Software Engineering, 230–239.

Rekimoto, J., and Green, M. 1993. The Information
Cube: Using Transparency in 3D Information Visualiza-
tion. In Proceedings of the Third Annual Workshop on
Information Technologies & Systems, 125 – 132.

Rohr, O. 2004. Auswahl und Konstruktion von dreidimen-
sionalen Visualisierungsmethoden zur Exploration objek-
torientierter Softwaresysteme. Master’s thesis, Lehrstuhl
Software-Technologie, Universität Dortmund, Germany.
In German.


