
 1

First Step on Engineering Comprehension
Use of Eye Tracking to understand computer experts thinking

Duc-Loc Huynh and YannGaël Guéhéneuc

Ptidej Team

LaiGLE – Labaratoire de Génie Logiciel Expérimental

GEODES – Group of Open and Distributed

Systems, Experimental Software Engineering

University of Montreal

Montréal, Québec, Canada

[huynhduc, guehene]@iro.umontreal.ca

1 Introduction

 The goal of our work is to show the

usefulness of Design Patterns with respect to

the performance of computer experts or

architect when they do their analysis and

engineering phases in a software system via

class diagrams.

 The EyeTraking system allows to

record, in real time, all attracting points of

movements of a person looking on the

screen.

 This equipment allows us to have

the gain to let the subject to do his task on

screen without inferring his work.

 While the fusion between the

EyeTraking technology and the software

engineering are from those beginnings, we

will present some related works opening the

path of this fusion. And then, we will

present the modelisation, how harvested data

will be use to verify our premise and also a

presentation of our test protocol, at last the

conclusion of our observations.

2 Related work

 The EyeTracking technology is

largely use in visualisation area. Research

on human perception versus computer

perception and research about interactions

between human and computer. We make

parallel between those research results and

ours to understand the behaviour and the

comportment of data harvested.

3 Experiments

 3.1 Fixation and Saccade

 The EyeTracking equipment allows

us to highlight, in the terms of

quantification, the fixation and the saccades.

Fixations are the interest points, when a

subject takes time to look a specific point,

area onscreen. Saccades are the movements

of fixations, it allow us to determine what

level is the insurance or hesitation of the

subject. The conclusion of this feeling flows

from comparisons and consistency of works

on the research area of cognitive

psychology. Where the EyeTracking is a

standard tool.

 3.2 Naïve Approach

Our first premise is that persons

know design patterns perform better, while

engineering task, than other computer

experts that doesn't know it.

 To ensure our assumption, we did

experiments on classes diagrams about

engineering tasks. It consists to ask a subject

to do some engineering tasks on classes

diagrams representing a portion of a

software system. Proposed diagrams have all

 2

a common point, they all have at least one

design pattern surrounded by others classes.

And more, the engineering task must have a

link with the design patterns present in the

diagram. We will ask to make change on the

design pattern, to add, remove or modify a

feature provide by the pattern. By this way,

we will be able to show the usefulness of

these structures, by studying the way the

subject reach the critical object and

considering the time needed.

The experiments are done on two

groups. Know and doesn’t know design

pattern. The engineering task was to add a

new figure listener in the system, like a class

“circleFigureListener”. Only good results

are considered. We observe that people with

design patterns knowledge, on figure 1, will

spend more time on strategic classes like

interface classes or abstract classes. Also,

they took more time to prowl through the

diagram and check all children of a class.

They did a depth-first search. People

without design patterns knowledge, on

figure 2, will not prowl through the whole

diagram if not necessary. Seem to us, that

they did a breadth-first search. They are

more concern about the name of the object

than there structure (interface or abstract

classes).

The conclusion of our first

experiment was, people without design

patterns knowledge perform better in

engineering task than people with design

pattern. That conclusion invalidates our

main premise.

 To understand why our assumption

was not proved, we investigate again, on our

set of subjects to find what they share in

common, like the background, the

experience, the knowledge of other language

... their feelings... In fact, we make a list of

Figure 1 : With design pattern knowledge

Figure 2 : Without design pattern knowledge

 3

all free variables and try to find a common

link between people and their results.

 Our conclusion of this investigation

was, people in the group that doesn't know

design patterns, has more experience about

programming and are not much worry if the

answer was correct or not. While the test,

they were relax and just did what they had to

do. Unlike the other group with people that

know design pattern, they had less

experience about programming and seemed

stress by the experiment. Not because they

were afraid about the material, but because,

they are from our laboratory of software

engineering, so they tried to find an

inexistent trap or something else. They were

more concerned about to give a good or

wrong answer than the first group.

 So, our first premise failed not

because design patterns are an evil thing

from hell, but because unconsidered free

variables.

 3.3 Refined Approach

 Looking at various free variables

that influence computers experts, we did

experiments again. The protocol of the

experiment is the same than the naïve

approach, that is, we asked to each subject to

do some engineering tasks closely link with

the design patterns of the diagram. The

distinction with the first approach is that we

need four groups; two sets of people without

design patterns knowledge, but with and

without experience, and another two sets of

people without design patterns knowledge,

with and without experience in

programming.

 Our new premise is the same than

the first, but we consider more in detail our

set of subject.

 Results are now, more consistent,

we can categorize groups; [group A] less

efficient, is the group with no knowledge of

design patterns and no experience, [group B]

second is the group with design patterns

knowledge but still not experience, [group

C] then the group with experience but no

design patterns knowledge, [group D] at last,

the most efficient is therefore the with

design patterns knowledge and with

experience.

 We observe that the group A has an

erratic way to analyse diagrams, also their

average answer or not very efficient. The

group B spends more time to analyse

understands and makes the engineering task.

They try to identify a design pattern before

to try to resolve his task. The group C, don’t

care about design pattern, it do his job in a

few time, but don't always know were or

how to make the engineering task. The

group D, is the more efficient, because it is

fast and efficient. It analyse and understand

diagrams fast and know where and how to

make the change!

4 Conclusion

To conclude, our researches are not

like others in computer sciences, we don't

study machine, we don't study algorithm,

but we study people! And when we speak

about people, we speak about a non exact

science! That is why our studies are not

trivial. With people, we have to consider

many factors, many free variables, like

experience, the mood of the person at the

moment of the experiment... All that

information is difficult to harvest, because

we have difficulties to define it precisely. To

compare something, we have to find a way

to quantify it.

Our studies are only at the

beginning, we still have a lot of side to find,

explore and understand. Only with this

experiment, we just scratching the surface,

we did not pay attention about the peripheral

vision nor the state of mind of subjects.

For now on our new assumption is

"Design patterns are use to compensate the

lake of background of new computer expert,

and help those more experiment to structure

their comments and diagrams to allow them

to work more effectively in team."

We are currently investigating this

new assumption on a larger set of subjects,

students of different university and even

 4

industrial people.

We believe that our studies will

contribute in a valuable contribution about

research between computer science and

cognitive science.

5 Bibliographies

“Eye Tracking Research & Applications”,

Duchowski, A., Karn, K. S., and Senders, J.

W., Eds., (ETRA) (Palm Beach Gardens,

FL, 2000), ACM. URL:

http://www.vr.clemson.edu/eyetracking/et-

conf/

“Software for Identifying Patterns and

Similarities”, Julia West, Anne R. Haake,

Evelyn P. Rozanski (Rochester Institute of

Technology), Keith S. Karn (Xerox

Corporation), ETRA, March 27-29 2006

