

Title:
Management of heterogeneous
clients

Version: 3.2
Date : Sept. 10, 2004
Pages : 31

Author(s):
Filippo Forchino (MTCI), Mario Negro
Ponzi (MTCI), Marco Cappelli (MTCI)

To:
WISE CONSORTIUM

The WISE Consortium consists of:

Investnet, Motorola Technology Center Italy, Sodalia s.p.A, Sonera,
Solid EMEA North, Fraunhofer IESE, Politecnico di Torino, VTT
Electronics

Printed on:
17/09/2004 10.29

Status: Confidentiality:

Public

[
[
[
[

X

]
]
]
]

 Draft
 To be reviewed
 Proposal
 Final / Released

[
[
[

X

]
]
]

 Public
 Restricted
 Confidential

- Intended for public use

- Intended for WISE consortium only

- Intended for individual partner only

Deliverable ID: D3

Title:

Management of heterogeneous clients

Summary / Contents:

This document describes the problems that may be faced developing software for mobile, heterogeneous

clients and which are the applicable solutions.

It represents a collection of guidelines that developers shall follow in order to cope properly with such

problems, and it is the result of the experience matured by the writers in the field of design and development of

software for wireless devices, inside and outside the WISE project.

 Copyright WISE Consortium

WIRELESS INTERNET SOFTWARE ENGINEERING IST-2000-30028

Management of heterogeneous clients

Deliverable ID: D3

Page : 2 of 31

Version: 3.2
Date: 17 Sep 04

Status : Final
Confid : Public

 Copyright WISE Consortium 2

Change log

Vers. Date Authors Description

1.0 2 Oct
2002

F. Forchino, M.
Negro Ponzi

Initial description

1.1 6 Nov
2002

M. Negro Ponzi Devices summary table, introduction to Qualcomm’s
BREW, merge of chapter 6 into 5 and 7.

1.2 20 Dec
2002

F. Forchino, M.
Negro Ponzi

Update considering Sodalia’s review.

2.0 14 May
2003

F. Forchino, M.
Negro Ponzi

Re-organisation of the document in form of guideline

2.1 08 Sept
2003

M. Negro Ponzi Adjustements

2.2 21 Oct
2003

P. Falco Integrated comments from partners’ review

2.3 30 Jan
2004

M.Cappelli Rework of chapter 4: caching of pictures,GPRS
EDGE UMTS overview, i-mode.

3.0 27 Apr
2004

M.Cappelli Added a table of comparison of GPRS, Edge, UMTS.

3.1 18 June
2004

F. Forchino Added guidelines about developing with GPS and
Databases to integrate partners’ experience.

3.2 10 Sept
2004

F. Forchino Update after PoliTo and IESE review.

Management of heterogeneous clients

Deliverable ID: D3

Page : 3 of 31

Version: 3.2
Date: 10-Sept-2004

Status : Final
Confid : Public

 Copyright WISE Consortium 3

Content

1 Introduction..5
2 Classes of Devices ...5
3 Packet-Switching Wireless Network Standards...8

3.1 GPRS ...8
3.2 EDGE...8
3.3 UMTS ..9
3.4 Comparison Table..9

4 Service architectures ..10
4.1 Thin clients ..10

4.1.1 HTML..10
4.1.2 WML and similar technologies..10

4.1.2.1 i-mode ..11
4.2 Fat clients...12

4.2.1 Available Java 2 Micro Edition technologies ..13
4.2.2 BREW technology ...14
4.2.3 Native development ...14

4.3 Summarizing architectures: advantages and disadvantages...15
5 Common problems and how to solve them..16

5.1 User interface and graphics..17
5.1.1 Downsizing desktop screens ..17
5.1.2 J2ME-specific issues..17
5.1.3 Customized deployment...18
5.1.4 Caching of pictures ..19

5.2 Input management..19
5.3 Network support ..20

Protocols ...20
5.4 Computing power ..21
5.5 Memory and storage ..22
5.6 Security issues ...22
5.7 Hardware access ..23
5.8 Debug: how good are emulators?...24
5.9 Developing position-aware applications ..24
5.10 Databases ...25

6 Related work..26
7 Conclusion ...29

Management of heterogeneous clients

Deliverable ID: D3

Page : 4 of 31

Version: 3.2
Date: 10-Sept-2004

Status : Final
Confid : Public

 Copyright WISE Consortium 4

Abbreviations

AWT Abstract Windowing Toolkit

BREW Binary Runtime Environment for Wireless

CDC Connected Device Configuration

CDLC Connected Device Limited Configuration

CDMA Code Division Multiple Access

EDGE Enhanced Data rates for GSM Evolution

GPRS General Packet Radio Services

GPS Global Positioning System

GSM Global System for Mobile communications

J2ME Java 2 Micro Edition

JNI Java Native Interface

MIDP Mobile Information Device Profile

OS Operating System

PDA Personal Digital Assistant

PDC Portable Digital Cellular

PDC-P Portable Digital Cellular Packet Network

PGW Packet Gateway transfer processing equipment

PPM Packet local processing Module

QoS Quality of service

SDK Software Development Kit

TDMA Time Division Mobile Access

UMTS Universal Mobile Telecommunications System

W3C World Wide Web Consortium

WAP Wireless Application Protocol

WML Wireless Markup Language

WMLScript ECMA-62 based scripting language for WML

WTLS Wireless Transport Layer Security

Management of heterogeneous clients

Deliverable ID: D3

Page : 5 of 31

Version: 3.2
Date: 10-Sept-2004

Status : Final
Confid : Public

 Copyright WISE Consortium 5

1 Introduction
This document describes common issues when building up services targeting multiple different clients and

some development approaches to solve them.

Since the same service can be developed for desktop computers and mobile clients, differences between

desktops and mobiles, as well as among mobile clients, are a main concern for developers. This document will

present a common approach for developing services that have to be handled by many clients with different sizes,

performances, and, in general, capabilities, especially where clients are connected to the network wirelessly.

We will at first outline the more important target devices and describe two main classes of services. Then we

will overview current development approaches that bridge device differences, and describe common problems

faced by programmers along with solutions or good practices that can solve, avoid or mitigate them.

2 Classes of Devices
Let us begin by over viewing the kind of device this document addresses. We grouped them in a short list

describing the typical capabilities of each one. The least common denominator is the possibility to connect them

wireless to the Internet. Devices are listed from the biggest and faster to the slowest and smallest (at least when

these two dimensions agree).

1) Desktops / Notebooks: as everybody knows it is possible to provide wireless connectivity to a common

PC just adding a dedicated card. Service application on those clients is just limited by the network

bandwidth /latency, while processing speed is not a problem; application development follows a

traditional approach;

2) TabletPC: notebooks taken to their extreme consequences are called TabletPC and their

power/capabilities range from an oversized PDA (see later) to a compressed notebook. In Figure 2-1 it

is emphasized that TabletPC often have a pointing device as a touch screen. TabletPC without such

pointing device are most commonly called Subnotebooks. Processor speed ranges, today, from a

200Mhz ARM processor to full last generation Pentium III/IV and memory sizes vary accordingly.

Operating systems can be those of desktops or those of PDAs, depending on device.

Management of heterogeneous clients

Deliverable ID: D3

Page : 6 of 31

Version: 3.2
Date: 10-Sept-2004

Status : Final
Confid : Public

 Copyright WISE Consortium 6

Figure 2-1: TabletPC

3) PDA: entirely based on a touch screen the most common components of this family are Palm PC and

PocketPC. Palm PC are developed by Palm and Visor companies and are based on Motorola Dragonball

processor (up until now, at least) at a typical clock rate of no more than 20MHz. Memory size ranges

from 1MB to 16MB. Palm OS is the referring Operating System (many versions available). PocketPC

are developed by many companies, are based on ARM (mostly Intel StrongARM) processors with a

clock frequency that range from 150MHz to 206 and above. Memory size can be 16, 32, 64 MB. They

are all based on Microsoft PocketPC operating system (basically a downgrade of common desktop

Microsoft OS Windows NT) and the vast majority has now a color display. PDAs are generally thought

as mini-notebooks and connectivity is normally optional (although easy to add).

Figure 2-2: PDA

Management of heterogeneous clients

Deliverable ID: D3

Page : 7 of 31

Version: 3.2
Date: 10-Sept-2004

Status : Final
Confid : Public

 Copyright WISE Consortium 7

4) Handheld PC: basically PDAs with also a small keyboard.

5) PDA phones: an extension to PDA where connectivity to the phone network is deeply integrated in the

device and not added. They follow general guidelines provided by PDAs (Operating systems have been

enhanced to support the added capabilities).

Figure 2-3: PDA phones

6) Smart phones: same as PDA phones but coming from a cellular world rather than from the computer

world. Operating systems now include SmartPhone from Microsoft (basically an enhancement to

PocketPC), Symbian (a consortium formed by Motorola, Nokia, Ericsson and others) and other

proprietary OSes.

7) Cellular phones (J2ME enabled): the electronic best sellers of those last few years have been enhanced

to support the download of application and services. Today it’s common to find J2ME enabled phones

but in the near future other programming platforms can be available (i.e. Qualcomm is porting BREW

also on non-CDMA platforms, see 4.2.2).

The above list is an overview of the main classes of devices in the wireless domain that can be reached by the

same type of service, and for which developers and service providers usually want to be able to create and maintain

a single piece of software. The table below summarizes the situation.

Category Screen size and

capabilities

Memory Cpu Connectivity OS/Platform

Desktops/Notebooks 640x480 to

1600x1200 and

more (screen

from 10 to 24

inches), million

color graphics

Up to some GB

RAM and

hundreds of GB

of mass storage

Currently from 1

to about 3 GHz

Wired or

wireless

Any high-end:

Windows,

Linux/Unix,

MacOS

TabletPC 800x600 to

1280x1024)

screen from 10

to 15 inches,

million color

graphics

Up to few GB

RAM and tens

of GB of mass

storage

Around 1 GHz

(extra low power

processors)

Wired or

wireless

Customized

version of those

for desktops

PDA About 240*320,

thousand color

graphic

Up to some

hundreds MB of

shared

RAM/mass

storage memory.

Intel StrongARM

and XScale,

Motorola

DragonBall,

MIPS and other

ARM-based

processors

Wired, wired

through a host

PC, wireless

Scaled-down

version of those

for desktops or

dedicated ones.

Management of heterogeneous clients

Deliverable ID: D3

Page : 8 of 31

Version: 3.2
Date: 10-Sept-2004

Status : Final
Confid : Public

 Copyright WISE Consortium 8

Handheld PC Up to 320x120,

thousand color

As for PDA As for PDA As for PDA Same as PDA

PDA phones As for PDA As for PDA As for PDA,

scaled down for

power saving

As for PDA plus

cellular

networks

Customized

version of those

for PDA

Smart phones As for PDA As for PDA Mostly new

ARM-based

CPUs

As for PDA

phones

Empowered

version of those

for cellular

phones,

Windows

Mobile,

Symbian.

Cellular Phones From non-

graphical, text-

only to

thousands colors

graphics

From some KB

to few MB,

growing

From 16bit

microcontrollers

to high speed cpu

Cellular

network,

wireless and

wired with or

without a host

PC

Dedicated

mainly

proprietary plus

Symbian.

3 Packet-Switching Wireless Network Standards

Standardization and cooperation using GSM caused a huge market growth in Europe. GSM has proven itself as a

good system for voice communication but its lack of bandwidth made it less useful for data transmission.

3.1 GPRS
A partial solution of the lack of bandwidth problem of GSM has come from the General Packet Radio

Service (GPRS). GPRS is a service that allows for the first time the users to connect to the Internet with a

mobile device. GPRS use the circuit switched
1
 GSM network, overlaying it with a packet based

2
 air

interface. Rather than dedicating a radio channel to a single mobile data user with its packet switching

system GPRS share the available radio resources between several users. This efficient use of scarce radio

resources means that a single cell can potentially serve a large numbers of GPRS users that will share the

same bandwidth. The number of users supported depends on the application being used and the amount of

transferred data. With the efficient use of the radio resources of GPRS, there is less need to build in idle

capacity that is only used in peak hours. GPRS therefore lets network operators maximize the use of their

network resources in a dynamic and flexible way, along with user access to resources and revenues. GPRS

will offer a connection speed of up to 115 kbps in ideal conditions and 30-40 kbps in average mobile

condition.

3.2 EDGE
The Enhanced Data rates for GSM Evolution (EDGE) is a third-generation (3G) high-speed mobile

data and Internet access technology it is an upgrade for GPRS networks that increase the throughput and

1
 Type of network in which a physical path is obtained for and dedicated to a single connection between two

end-points in the network for the duration of the connection. An example is the ordinary voice phone service.
2
 Packet-switched describes the type of network in which relatively small units of data called packets are

routed through a network based on the destination address contained within each packet. Breaking communication

down into packets allows the same data path to be shared among many users in the network. This type of

communication between sender and receiver is known as connectionless (rather than dedicated). Most traffic over

the Internet uses packet switching and the Internet is basically a connectionless network.

Management of heterogeneous clients

Deliverable ID: D3

Page : 9 of 31

Version: 3.2
Date: 10-Sept-2004

Status : Final
Confid : Public

 Copyright WISE Consortium 9

capacity of GPRS by three to four times. EDGE, like GPRS, is a packet based service that provides to the

users a constant data connection. The first commercial launch of EDGE services took place on June 30,

2003 in Indianapolis (USA) and a full-scale commercial EDGE deployments is expected to occur

throughout 2004.

With an average throughput of 80-130 kbps , EDGE can support a wide range of advanced data

services, including streaming audio and video, large file download and a fast Internet access.

3.3 UMTS
Universal Mobile Telecommunications System (UMTS) is the leading 3G technology today, it will

offer a potential worldwide coverage. UMTS is an Internet Protocol-based technology that supports

packetized voice and data that delivers peak data rates of up to 2.4 Mbps and an average speed of

300Kbps (with an increase of speed if the device is stationary). As EDGE, UMTS is designed to deliver

services such as streaming multimedia, large file transfers and even video-conferencing to a variety of

devices, including cell phones, PDAs and laptops. Like EDGE, UMTS is packet-based and offers an

always-on connection
3
 .

UMTS is compatible with EDGE and GPRS which allows users to move out of an area with UMTS

coverage and automatically be switched to a an EDGE or GPRS network, it includes sophisticated quality

of service (QoS) mechanisms, that will ensure that the needed amount of resources is given to each type of

data service.

3.4 Comparison Table

 Average speed (kbps) Theoretical maximum (kbps)

GPRS 30-40 115 - Always on data connection

- Packet switching

- Available over GSM

networks

EDGE 80-139 170 - Always on data connection

- Packet switching

- Available over GSM

networks

- Future enhancements shall

include improved voice

capacity, coverage and

speech quality features

UMTS 300 2400 - Always on data connection

- Increased speech quality

- Able to switch to an EDGE

or GPRS network if needed

The UMTS and EDGE’s high bandwidth will lead to a dramatic increase in wireless services and let

developers choose many options previously unavailable.

It is partially possible to solve computing capability and memory problems of clients increasing their bandwidth

and moving data, graphics manipulation as well as resource management on the server side. Graphical resources

and databases can be moved on the server so that the client just asks for the information it needs and all the heavy

duty gets performed on the server. This kind of approach relies on a low-latency and high-bandwidth link.

3
 In the sense that the mobile terminal is always connected to the internet and can send and receive data packets

at any time, without the need of establishing before a dial-up connection.

Management of heterogeneous clients

Deliverable ID: D3

Page : 10 of 31

Version: 3.2
Date: 10-Sept-2004

Status : Final
Confid : Public

 Copyright WISE Consortium 10

4 Service architectures
Two different categories of services exist. These two map to two service architectures and therefore to two

different development methods.

Depending on the needed type of service, programmers can create a kind of web site or a “real” application.

That means that for some services a web-based solution is the best choice while in some other cases it’s best to

have a full client on the terminal. All depends on the type of interactivity and processing power the application

needs, as outlined in the table below.

Service group Poorly interactive Highly interactive

Information Mostly static Highly dynamic

Information

freshness

Refreshed rarely Refreshed frequently or in real time

Data exchange Slow exchange of small packets of data Frequent or continuous exchange of packets

of data of any size

Information display Mostly textual Mostly graphical

These two service categories are both useful and used. Often, it may be possible to implement a service as both

a poorly-interactive or highly-interactive application, but most of the times the service requirements clearly map int

one of the two categories.

Poorly interactive services tend to be implemented on Thin Clients, while highly interactive services usually

need a Fat client. The choice of which client architecture to use depends almost exclusively on the type of service

required and, as we will see, it is not that much influenced by the need of compatibility with desktop applications.

Section 4.1 will describe the thin client approach while section 4.2 will introduce the fat client approach of

both Java Micro Edition and Qualcomm’s BREW proposals.

4.1 Thin clients
Thin clients do not need or are not able to provide high computational capabilities (i.e. no interactive

multimedia or complex searches on databases). They are usually not required to process complex information.

Calculations are made, where needed, on servers. It means they usually presents only static information to the user

and that almost any interaction between the user and the client triggers a request on a server. In order not to be

dependent on different screen sizes and capabilities (e.g. colour depth), the usual approach is to adopt either HTML

or a stripped down version of it, usually WML or cHTML.

4.1.1 HTML

High-end PDAs actually support an almost full HTML. It is possible that in the near future, thanks to bigger

screens and to faster processors, HTML will be the common, and probably the only, language for the web. For the

time being, however, full HTML support for wireless devices is available only on the higher-end PDAs and

smartphones, and usually rely on specialized components to render the HTML correctly on the smaller display.

Additionally, at the moment the majority of input devices on mobile devices, are keypads without pointing

(mouse) capabilities, while HTML relies heavily on the point-and click interface of desktop computers.

For this reason, poorly interactive services are not usually implemented using full HTML.

4.1.2 WML and similar technologies

In the last few years, a group of markup languages targeted to limited mobile devices has been developed.

Before proceeding we must say that WML is not the only markup language platform of its kind: cHTML and

others also do exist. But today, in Europe, WML is by far the de-facto standard among limited-devices markup

languages.

Management of heterogeneous clients

Deliverable ID: D3

Page : 11 of 31

Version: 3.2
Date: 10-Sept-2004

Status : Final
Confid : Public

 Copyright WISE Consortium 11

As stated above, many services can be deployed using some sort of WAP/WML, where WAP is the application

protocol over which commonly WML lives. Those services, generally, are used to provide financial, weather, sport

or other information to clients. As we can see in the traditional World Wide Web, there are plenty of such services

and almost all of them can be accomplished on mobile clients using WML. WML is a language very similar to the

HTML, specially designed for small clients with small screens and low bandwidth: it has a “deck/card
4
”-based

approach that minimizes the activity on the network
5
 allowing users to feel a much more interactive navigation.

Technology’s advances are relaxing bandwidth constraints while the major problem still remains the display

capability.

WAP-enabled clients with WML commonly also support an enhanced Javascript-like language, called

WMLScript: for example it can prove useful for client-side form-check but it also provides some other dedicated

functions such, for example, digital signature see later, in 5.6).

WML and WMLScript let web developers modify their current web pages to make them suitable for wireless

mobile clients. This operation normally does not need a complete service’s architecture rework. Depending on the

personal viewpoint and on the type of service that has to be deployed, those modification can be a little or a big

price to be paid for handling heterogeneous clients.

Content-definition languages such as XML can be used to minimize the rework needed for porting a web

service to mobile devices by applying the correct stylesheet (XSLT) for the target device, however, the initial hype

over this approach has been mitigated by the actual cost of XSLT maintenance and development.

Maintenance costs are also very high, because every modification made to the standard “desktop” version

should also be made available to the mobile version.

Dedicated services for mobile clients are also possible. This obviously clears every compatibility issue.

4.1.2.1 i-mode
Launched on February 22,1999 by NTT DoCoMo in Japan, i-mode is a mobile phone platform born to provide

a quick and continuous connection to the Internet. The i-mode has been phenomenally successful in Japan and on

December 9, 2001 the i-mode subscriptions have growth to more than 29.5 million and have arisen to 39 million

on July, 2003.

NTT DoCoMo’s evolved the Portable Digital Cellular (PDC) network into a packet network named PDC

Packet Network (PDC-P) .The PDC-P is based on the introduction of two new elements: Packet Gateway transfer

processing equipment (PGW) and Packet local processing Module (PPM). The PGW act as a gateway between the

mobile network and the external networks (like Internet). The PPM manages the packet exchange from PGW and

the mobile device.

The i-mode at the beginning offered a packet transmission speed of 9.6 Kbps, raised to 28.8 Kbps in the

middle of 2002. Even with this low speed i-mode had a great success due to the wide variety and quality of the

services offered to the users. Some of those services are provided directly by NTT DoCoMo but the majority

comes from external partners called content (service) providers.

The service providers are separated in two categories: official and unofficial. The official content provider’s

sites are server shown in the i-mode menu and are accessible after a subscription and it will be NTT DoCoMo that

collects monthly information charges on behalf of i-Menu content providers (charging a 9% commission for the

billing system service). The official content providers have been validated and approved by NTT DoCoMo.They

4
 WML "pages" are referred to as decks. Each deck consists of one or more cards. When the WML micro

browser accesses a WML document (or deck), it reads the whole deck, and navigation between the cards in this

deck is done without the need to load any more data. So once you've loaded a deck, all cards within it stays

(statically) in the WML micro browser memory until the browser is instructed to reload the whole deck.

5
 As we’ve tested on Pilot2 of WISE project, round-trip times over GPRS can be very long, even more than 10

secs. So, if a page takes a long time to be loaded on a desktop client, its loading time on a wireless client could be

unacceptable.

Management of heterogeneous clients

Deliverable ID: D3

Page : 12 of 31

Version: 3.2
Date: 10-Sept-2004

Status : Final
Confid : Public

 Copyright WISE Consortium 12

are directly connected to the i-mode server, which means that data is not transported over the Internet on its way

from the content provider’s server to the user.

The unofficial sites are accessible via the Internet directly entering their URL, it will be the i-node server that

enables Internet access from i-node phones by relaying communications between the NTT DoCoMo packet

network and the open Internet network. Those content providers will not participate in DoCoMo’s billing system.

Both the official and unofficial sites have to be written using iHTML that is a subset of HTML, it is very

similar to the Compact HTML (cHTML) defined by the W3C, with some addiction like phone number links and

the access to a predefined set of icons (Emoji icons). NTT DoCoMo to integrate J2ME on mobiles phones has

developed DoJa, a Java platform that is based on the CLDC but is not compatible with MIDP.

i-mode™ users outside Japan exceeded two million at the end of January 2004 and continue to grow rapidly.

Services are currently available through at least seven i-mode operators outside Japan: BASE NV./S.A (Belgium),

Bouygues Telecom (France), E-Plus (Germany), Far EasTone Telecommunications Co., Ltd. (Taiwan), KPN

Mobile (The Netherlands), Telefónica Móviles España (Spain), WIND Telecomunicazioni S.p.A. (Italy),

representing a market of over 60 million cellular phone users.

Developing an application for i-mode presents pretty the same problems of developing a ‘normal’ wireless

application. The use of iHTML offers an interesting chance, as suggested by NTT DoCoMo a content provider can

translate his web site from HTML to iHTML (and this will not be a challenging task) or he can use a conversion

server, this server will translate the HTML pages, requested by an i-mode client, into iHTML compatible pages,

after that it will deliver the pages to the i-mode client. With a conversion server the web service will be available to

both i-mode and Internet users.

The lack of compatibility of WML - iHTML and MIDP - DoJa is a big problem for application development.

It means choosing whether to develop a service/application for one or the other platform. Developing an

application for both the platforms means develop two different applications.

4.2 Fat clients
Some services need to process a lot of data directly on the client. Common examples include games, graphical

applications such as slide viewers, engineering and mathematical tools and many complex applications with local

databases. Those applications share many needs with thin clients but cannot be implemented only using the above-

described approach. Nevertheless they have to be deployed on many different platforms.

Today almost every device can be programmed using some sort of C-like language but C is hardly a cross-

platform language and, more important, compiled C is not portable. A dedicated client should be deployed (where

not also developed) for every target platform, slowing down the time-to-market of the service itself and increasing

costs.

As a matter of fact, the only “powerful” commonly used language available today on many platforms is JAVA.

Not only it is compatible at source-code level but every program doesn’t have to be recompiled to distribute it on

different platform. Especially after the release by Sun Microsystems of the J2ME specification, Java can now be

easily deployed on many mobile clients providing a common ground for developers. Java also offers a protected

environment providing users insurance that a malicious or bugged application cannot harm the device itself or its

data. And leaves companies the ability to maintain secrecy on their Operating System’s code (even API).

But J2ME is not full Java. That means that, while the language remains the same, some of the most advanced

(and useful) features of Java are not available on a J2ME platform. Moreover, Java was born for desktop and server

computers and its being “both” interpreted and compiled can be a constraint on slow-processors based devices like

cellular phones.

Without identical libraries, particularly regarding graphics, different clients have to be developed for small

devices and desktops. And since some PDAs implement Personal Java (see later), this could lead to a third version

Management of heterogeneous clients

Deliverable ID: D3

Page : 13 of 31

Version: 3.2
Date: 10-Sept-2004

Status : Final
Confid : Public

 Copyright WISE Consortium 13

of the client. Even with those limits (three different versions to maintain) many parts of the code and of the

architecture can be shared and commonalities are still very important.

Java masks many troubles related to the handling of heterogeneous clients: code can be shared among many

devices without big modifications. Making software that has to be deployed also on desktop clients implies making

specific software not using resources of modern computers. Some ongoing projects have as a goal to run

unmodified J2ME code on a desktop machine equipped with J2SE.

A trained Java programmer can easily switch between standard Java and J2ME (MIDP or Personal Java).

4.2.1 Available Java 2 Micro Edition technologies
Many Java technologies exist at the moment. Sun groups and develops them as divided in 3 main “Editions”:

Java 2 Micro Edition (J2ME), Java 2 Standard Edition (J2SE) and Java 2 Enterprise Edition (J2EE). Java 2 Micro

Edition (J2ME) is targeted specifically at low-end devices, and is being developed using two concepts:

configurations and profiles. Configurations are Virtual-machines related issues and mainly state what a virtual

machine should or should not be able to do (for example regarding memory constraints, garbage collections, etc.).

Profiles on the other side are related to standardization of the API. It is possible that different profiles are available

for the same configuration as well as the opposite, at least in theory.

The most common branches of J2ME include:

Embedded Java

Embedded Java provides no core-API. In place of it any vendor can implement any device-specific API to

suite specific needs.

Java Card

Java Card was born for implementations on small smart cards-based devices, especially targeted for

standardizing secure card communications and transactions.

CDLC + MIDP
Today CDLC (the configuration specific for cell phones) is mainly connected with MIDP. That is why we will

consider them toghether. This implementation is developed on three layers and it is specifically targeted to mobile

phones and similar devices, in order to provide customized applications to clients.

Main layers of this J2ME implementation are:

- K (Kilobyte) - Virtual Machine:

o Developed to have a memory footprint between 40 and 80 kilobytes;

o ANSI-C implementation for easy of porting

o As fast as possible

- CLDC (Connected Limited Device Configuration):

o No support for floating point;

o No support for finalization;

o No support for Java Native Interface;

o No reflection;

o No support for threads group;

o No weak references.

- MIDP (Micro Java Device Profile):

o Screen size of at least 96x54;

o Display depth at least of 1 bit;

o Ratio of pixel of approximately 1:1;

o Input with keyboard, keypad or touch screen;

o 128 KB of non-volatile memory for MIDP components;

o 8 KB of non-volatile memory for application persistent data

o 32 KB of volatile memory for Java Runtime (heap)

o Two way network communication with limited bandwidth

Management of heterogeneous clients

Deliverable ID: D3

Page : 14 of 31

Version: 3.2
Date: 10-Sept-2004

Status : Final
Confid : Public

 Copyright WISE Consortium 14

CDC
Based on CLDC, another specification has been launched called CDC: Connected Device Configuration and

differentiates itself from the CDLC because of a minimum of 512K ROM needed, 256K RAM, full connectivity to

a network and a full compatibility with the standard Java Virtual Machine.

Personal Profile and Personal Java

The Personal Profile, under standardization, will be compatible with an earlier version of limited Java, called

Personal Java and already available on some PDA and high-end cell phones.

This profile is a very complete Java environment lacking in practice just some heavy graphical features. For

example, it includes support for reflection, JNI and AWT. It’s commonly said that Personal Java is very much like

Standard Java as of version 1.1.8.

4.2.2 BREW technology
BREW is a Qualcomm’s solution proposed in order to deploy a common programming environment dedicated

to cell phones. BREW is an open applications execution platform that resides on the wireless device. Some key

features (with the Java counterpart) are discussed below:

- BREW is thin because it’s developed specifically for wireless phones, while J2ME suffers for being a

“downsizing” of an heavy architecture;

- BREW is fast (at least faster than Java) because its runtime is chip-based (that means that is directly

supported by a dedicated hardware/firmware); on the other side new CPUs (i.e. ARM) are introducing

hardware support for Java bytecode (called Jazelle for ARM);

- BREW is more flexible than Java because it supports different programming languages: from C/C++ to

WML, on top of it it’s provided even a J2ME compliant virtual machine (so that a BREW-enabled phone

can easily support J2ME too), but using JAVA on top of BREW should be deeply investigated for

performance behaviors. It’s always better to build a Java Virtual Machine on top of the operating system’s

API.

The BREW platform also proposes a framework for deploying, testing and shipping application directly on the

phone. And, much important, it takes care also of the billing perspective providing a kind of pre-packaged server-

side structure. For commercial application this can be seen as a big add-on because with J2ME there is no standard

already in place.

Actually the main limit of BREW is that it’s provided only for CDMA platforms, while porting on other

networks such as GSM/GPRS is underway.

4.2.3 Native development
Until some recent initiatives, it was practically impossible to develop native applications for mobile handsets,

because manufacturers did not provide interfaces to the handset code, relied on heavily proprietary systems, and

did not provide any facility to install and debug the software. Development was possible on PDAs, however, since

the two main Operating System developers, Palm Inc. and Microsoft, used the customisability of the platforms and

the number of available applications as an incentive for buyers, and therefore provided SDKs and tools to the

developer community.

This situation has recently changed mainly for two reasons:

1. Manufacturers have started to commercialise mobile handsets based on third-party operating systems,

such as Linux or Microsoft Windows Mobile. This has made the facilities of these Operating Systems

available to developers

2. Manufacturers have created consortiums for the standardization of Operating Systems or native

application layers, such as the Symbian OS consortium. This again has the intent of attracting the

developer community to native development.

The most recent analyses, however, still show a slow progress on development of native service for mobile

handsets, which tends to be very costly and too difficult to port to other devices.

Management of heterogeneous clients

Deliverable ID: D3

Page : 15 of 31

Version: 3.2
Date: 10-Sept-2004

Status : Final
Confid : Public

 Copyright WISE Consortium 15

4.3 Summarizing architectures: advantages and disadvantages

The table below compares the previously discussed technologies, summarizing the advantages and

disadvantages of each. A brief description on their scope (typical applications for which each technology is mainly

used) is included.

Technology Advantages Disadvantages

Portable over millions of cell phones Very limited GUI customization capabilities

Easy to develop for non-programmers Very limited and slow interaction

Easy to port from web-applications Little or no control over representation

Widely supported by handset manufacturers Provider support through WAP gateways

WTLS security protocol supported
Unsupported by manufacturers outside the

wireless industry

Thin client

based on

WAP/WML

No development risk

Typical applications: news, financial updates, online address book, WEB-based applications porting

It is possible to develop core applications
A different application has to be developed for

every possible device

Total integration with native operating system:

it is possible to use hardware dependant

features.

A different application has to be deployed for

every possible device

Full GUI customization
Developers should be trusted by manufacturers

(and/or have to pay license fees)

Fastest access to the network
Usually developed in C/C++ with language

idiosyncrasies

Fat client

based on

proprietary

solution

Fastest execution speed

Typical applications: embedded applications developed for provider-customized devices

Portable to many new generation high-end

phones
Not adaptable to old phones

Full GUI control
Need for customization for different devices’

displays

Widely known language
J2ME is a bit different from J2SE and

programmers need to get in touch with it

Strongly supported Devices specific implementations

New processor can provide hardware support Proprietary non-portable APIs

Open solution with default implementation
Interpreted language: on low-power device it

can be very slow

Supported over many general-purpose devices

(not only cell phones) with various

implementations.

Limited performance of the Garbage Collector

Application secured inside a sandbox
Need for a consortium agreements on

improvements: slow process

 Application deployment still not standardized

 Application security limits

 Memory-hungry

Fat client

based on

J2ME

Dependence on manufacturer’s implementation

for hardware access

Typical applications: interactive games, business applications developed for a wide audience, application that

need a graphical processing such as map-based applications

Management of heterogeneous clients

Deliverable ID: D3

Page : 16 of 31

Version: 3.2
Date: 10-Sept-2004

Status : Final
Confid : Public

 Copyright WISE Consortium 16

Core hardware support CDMA-only devices (at least until today)

 Proprietary solution (with license fee)

 Specific language

 No native support

Fat client

based on

BREW

Dependence from Qualcomm for

improvements

Typical applications: committed on-demand applications developed for BREW clients on CDMA networks

Standardized solution with heavy industrial

support

Three different platforms (PocketPC, Palm OS

and Symbian OS)

Deep integration with the environment Today only deployed on very high-end devices

Open consortium for Symbian OS, open APIs

for the others

Minor customization problems among different

devices: different PocketPC distributions,

various GUI interface Symbian

implementations, different OS versions

Large background and history for Microsoft

PocketPC/Smartphone and Palm OS

Programmable using many languages (from C

to Java to OPL/Visual Basic/.NET)

Fat client

developed

using native

tools on

Symbian OS,

Palm OS or

MS Pocket

PC/Smartpho

ne

Adaptable both for business and for core

performance oriented applications

Typical applications: any for enabled (high end) devices

5 Common problems and how to solve them
What follows is a detailed list of troubles the developer can run into while developing applications for

heterogeneous clients. A development team should consider every aspect listed when building the architecture of

the service.

As a note we remember that what follows are notes from a programmer perspective. Many problems listed are

related to developing applications, particularly using Java Micro Edition. Many of such troubles are less important

or non-existent for what we called information services (mainly because they are handled by the system).

The following table presents an assessment of the impact of each of the issues outlined below for thin clients

and fat clients.

Problem Thin client Fat client
User interface and graphics Heavy issue Medium issue

Input management Heavy Issue Heavy Issue

Network support N/A Medium issue

Computing power N/A Heavy Issue

Memory and storage N/A Heavy Issue

Security Moderate Issue Moderate Issue

Hardware access Heavy Issue Moderate Issue

Debug: how good are emulators? Moderate Issue Moderate Issue

Developing position-aware

applications

N/A Moderate Issue

Databases Moderate Issue Heavy Issue

Each topic will be articulately discussed in the following paragraphs. At the end of each paragraph we will

summarize in a table, as quick-reference guideline:

Management of heterogeneous clients

Deliverable ID: D3

Page : 17 of 31

Version: 3.2
Date: 10-Sept-2004

Status : Final
Confid : Public

 Copyright WISE Consortium 17

• The scope of the problem [PROBLEM field, in green]

• The things that developers should keep in mind for designing their solution to the problem, i.e. potential

or commonly faced issues [ADVICE field, in red]

• Our suggested solution; this is a usually empirical, previously experimented approach that can therefore

be duplicated with relatively minimal issues [SUGGESTED APPROACH field, in blue]

5.1 User interface and graphics
Following sections summarize problems related to the user interface. Section 5.1.1 applies to the thin client

approach while section 5.1.2 is specific for fat clients application developed using J2ME. Also section 5.1.3 is

specific for J2ME but the described considerations can be easily ported to other fat client approaches (native code

or BREW).

5.1.1 Downsizing desktop screens
Representation, aka User Interface, is the enemy. In fact, we cannot easily control representation on different

devices because of their different screen-sizes, color and input mechanism. We all have seen that some web pages,

great-looking on a big desktop web-browser aren’t at all optimized for small monitors. And on the mobile things

get even worse. But for informations services we are lucky since our data don’t depend on screen size (mostly). As

with HTML we have to be aware that the content will be displayed with client’s preferences but the content itself is

fully preserved.

A specific architecture could be useful in order to optimize data transfers between client and server: the

deck/card solution used by WML should be used to load the most probably needed data. With HTML all those data

can be merged in a single page (i.e. a big form can be split on a mobile on multiple cards while on the desktop

client it can be on a single one). Anyway in the near future bandwidth will grow and latency will decrease allowing

also less optimized or heavier pages to be usable.

Another important issue to consider in developing information services for the desktop as well as mobiles is

the use of “heavy-weighted” pages. Today in the web there are more and more pages that rely on applets and/or

components (i.e. Macromedia Flash, as on the WISE web-site). All those technologies are mostly unusable for light

mobiles. Therefore compatibility means a probably less-appealing desktop solution.

Even big and/or animated images can be a problem: mobile screens can be at the most 120x240 or so, while a

common display usually achieves a 96x64 resolution; this means that bigger images can hardly be displayed (not to

mention the problem of the frame-rate for animations).

All those considerations depend on the real target and may change in a few years: for example some light PDA

already have 400MHz processors and a relatively “big” screen. More, their integrated browser can process applets

(at least those not using Java 2 features), as well as (for Windows Mobile–based clients) ActiveX.

5.1.2 J2ME-specific issues
The first issue that must be considered handling heterogeneous clients is the graphical front-end. Mobile

clients are equipped with many different sized screens; this means that an application must handle with care what is

displayable and what’s not on each device. Use of bitmaps graphics can be difficult to sustain due to limited

stretching capabilities and to the poor quality of results. This problem has always existed even on common desktop

programs, but with the introduction of scroll-bars and some other graphical tricks it seemed less important. But on

mobile clients scroll-bars aren’t often a good solution because of difficulties of handling them (see later, under

Input management).

Under J2ME it’s available a kind of high-level API (the javax.microedition.lcdui package) that is a common

layer for using buttons (menu-driven commands), menus, edit-boxes and the like. But the graphical quality of the

output on the vast majority of clients is at most scarce. Programmers have no control on the display and this leads

to an uncomfortable look, on which commercial applications can hardly be based.

A lot of effort has been spent to bypass this problem:

- LWT (Lightweight Windowing Toolkit) has been developed by Motorola;

- OWT (Open Windowing Toolkit) is an open source windowing project;

Management of heterogeneous clients

Deliverable ID: D3

Page : 18 of 31

Version: 3.2
Date: 10-Sept-2004

Status : Final
Confid : Public

 Copyright WISE Consortium 18

- kAWT is another commercial (and probably the most featured) windowing toolkit.

All those toolkits try to compensate the lack of AWT in J2ME while none recreates the original AWT (but

kAWT exists also for desktops).

As we will show in section 5.1.4 later the above-mentioned toolkits are not well suited for every mobile client

and are mostly targeted to PDAs or PDA-like.

Another issue concerning graphics is the difference between displays: on clients colour depth ranges from two

to thousands of colours. More, screen background and foreground colours can vary widely from grey on green,

dark grey on light grey and so on, thus producing different effects on different screens. Readability, particularly for

pictures, can thus be perfect on some screens and completely compromised on others.

Colour customisation is, in practice, the only possible solution. It can be actively (changing resources in the

code) or automatically (using some functions to check display capabilities) performed but, in any case, a preview

of target devices is advisable. New clients development can lead to new releases of the code and this also lead to a

continuous rework of the code (although a well-planned project can minimize this).

5.1.3 Customized deployment
Hardware limits can be a constraint for every application forcing programmers to write a program using only

least common denominator attributes of every device. For example using million color graphics, while useful on a

color screen, can prove meaningless on a b/w device (that is unreadable graphic and huge space loss). Big bitmaps

can also be used just on some device without providing also some scrolling capability (that is not always what we

want).

A common solution could be to share code without sharing resources. While Java doesn’t allow conditional

compilation, it is still possible to use different resource classes for every different device (or, at least, for classes of

devices). So, for example, a bitmap name for a million-color display can be different to that for a b/w one.

Resource classes can be selected at runtime (so that every distributable package has every possible configuration

loadable), or hard-coded on a case-by-case basis. The second solution can be annoying for deployment but doesn’t

force even harder constraints in terms of physical storage memory on devices. Build tools as Ant can prove useful.

PROBLEM Mobile devices display can vary in size and color depth.

WML and the like do not allow a satisfactory control on content representation

and are just suitable to some kind of services.

Programming languages are more powerful but an application must nevertheless

take in account the fact that it may be run on clients provided of very different

display capabilities.

ADVICE Keep in mind that the mobile devices displays are small. Size can vary from

96x64 pixel or less to, at the most, 120x240 pixel or a little more

ADVICE Keep in mind that the mobile network may have a limited bandwidth (specially

GSM connections) so big pictures can also take an unacceptable time to be

loaded.

ADVICE Keep in mind that the mobile devices displays can have a little color depth (even

2 colors). For screens supporting a very low number of colors (typically 2 or 4),

all the graphics in order to look nice should be completely redrawn (color

reduction algorithms of graphics programs do not produce satisfactory results).

SUGGESTED APPROACH If you need to control the content representation or a customized GUI (not just a

set of forms), the only solution is to use a programming language (Java/C++)

instead of a markup language (even with scripting capabilities) as WML.

It is also advisable to use an open solution as the J2ME or Symbian OS

frameworks.

SUGGESTED APPROACH Use small pictures. To have better chances that your pictures are dithered in a

satisfactory way on low-color-depth devices colors, you may use contrasting

colors and remark the picture edges in black (applies to logo and graphics, not to

Management of heterogeneous clients

Deliverable ID: D3

Page : 19 of 31

Version: 3.2
Date: 10-Sept-2004

Status : Final
Confid : Public

 Copyright WISE Consortium 19

photo-realistic items of course).

SUGGESTED APPROACH When developing in Java for a PDA or PDA-like devices, the use of a windowing

toolkit is highly recommended if you need to show a good looking GUI.

5.1.4 Caching of pictures
In 5.1.3 we’ve talked about the solution of having the resources loaded at runtime (so that deploying the

application without the resources will save space in the storage memory) but if we have to load a lot of pictures at

runtime we will quickly fill up the memory. A first solution is building a caching system to store the runtime-

loaded pictures so that when the application needs a picture it will simply ask for the picture to the cache, the cache

will provide the requested picture (eventually requesting it to a server).

A better approach is to provide a caching system able to load the required graphics from the local resources or

from the server. With this approach the developer can choose which pictures could be stored in the local resources

and which have to be loaded from an external server, so there could be various versions of the application which

differ in requested physical storage memory.

PROBLEM Loading all pictures from a server at runtime will save space in the mobile

device’s storage memory, but it will use a larger amount of volatile memory.

ADVICE Keep in mind that the mobile devices have different displays with different size

and color depth.

ADVICE Keep in mind that the mobile devices have a different amounts of storage and

volatile memory.

ADVICE Keep in mind that the mobile network may have a limited bandwidth (specially

GSM connections) so big pictures can also take an unacceptable time to be

loaded.

SUGGESTED APPROACH If you need to include a large number of pictures in your application it is

preferable to load them from a server, so the server will send pictures that fit

better with the device display.

SUGGESTED APPROACH To prevent unnecessary network traffic and to save space in the memory of the

mobile devices use a caching system (the most used pictures will be requested

few times and the least used pictures will not occupy the memory of the device

when not needed).

5.2 Input management
Differences in input management can be harder to handle because of the variety of input devices available.

But, in practice, those devices can be generally classified as full keyboards, keypads and pointing devices (such as

mouses, tablets and joysticks/joy pads). Providing support for each one of those three different classes of pointing

devices means covering almost every possibility.

As everybody knows inputting data into a small mobile phone isn’t as easy as on desktop PCs. Just a simple

SMS can take a relatively long time to be edited on a cell phone. The problem is the limited amount of space

available for keyboard and the absence of a mouse. Current solutions comprise software-enhanced interfaces (such

as T9-like technology for writing on phones) and touch-screens. A touch screen can be a definitive solution

allowing wider screen and direct mouse-like input. Handwriting recognizing techniques have already been

developed and a trained user can be as fast as with common paper handwriting. The only problem lies in the

inability to use the device with a single hand and the lack of robustness of touch-screens compared to keypads.

Relying on touch screens, programmers can make “window” interfaces with buttons and all other common

controls we are accustomed to on desktops. But those controls are not of practical use when having just keypads,

just as using a windowed desktop only with a keyboard (that is by far easier than a keypad).

Management of heterogeneous clients

Deliverable ID: D3

Page : 20 of 31

Version: 3.2
Date: 10-Sept-2004

Status : Final
Confid : Public

 Copyright WISE Consortium 20

Up until today the majority of mobile clients don’t use touch screens so a common application should not

involve pushbuttons, combo-box and scrollbars. Today’s mobile phones interface should be used as guides for

graphical design. Also old-style arcade games may be used as references (but remember they had a big screen).

More exotic input solutions involve voice. While a huge number of phones support this method for making

calls, it is not so common on other devices and it’s not at all fail-proof. A noisy environment can be a hard obstacle

to by-pass. So applications cannot rely on this input method.

A wide deployable application should be able to use the most limited set of buttons. In the near future J2ME

application might be deployed on watches or even on wearables. On those devices it’s likely that a very limited

keypad will be present (maybe with just three or four buttons), so a very easy-to-use interface should be developed.

Technologies like T9 can be a big help but are not useful for, in example, list selection.

If even the most limited handset must be taken in consideration, that doesn’t mean that a full-size keyboard

shouldn’t be of any help. A major mapping of commands can greatly improve usability. For example, while on

some devices certain preferences can be selected only navigating on menu and submenus, a shortcut could be

placed for clients having full-keyboards. But development should follow a ground-up approach (from the most

limited device to the most features-full) avoiding, as we’ve said in 5.1.2, common graphic interfaces based on

buttons, list boxes, etc. that are uneasy to use without pointing devices. This is the only guarantee one can have to

develop a fully usable application even on the most limited device.

Providing every possible input handling on every version of the program should be the preferred choice

because, even if on most devices many of the possibilities offered will not be used the overhead in term of coding

is very low. On the other hand, customizing input handling for every device can easily be a nightmare for the

programmer.

PROBLEM Mobile devices input methods can vary widely. When developing in WML you

don’t have to worry about this but when using a programming language (specially

J2ME) you do.

ADVICE Keep in mind that the mobile devices displays are small, so even text messages

may not fit entirely into them. Your GUI shall have scrolling support so if the

information is bigger than the (variable size) display it can be fully accessed as

well by the user.

ADVICE Low-end devices usually have a keyboard (at the most some kind of jog for

navigation), high-end devices usually use touch screen. Design your GUI in a way

that is handy for both approaches (and handle both approaches in the code as

well).

ADVICE Both with keyboard or virtual keyboard (on touch screen enabled devices)

inputting text is much harder than on desktops. The amount of text input shall be

carefully limited.

ADVICE Voice input may be not widely supported for open solutions. In general, relying

on it is discouraged.

SUGGESTED APPROACH Use an icon-based GUI. Icons can be clicked on touch-screen displays and

navigated and selected with a keyboard (imagine using Microsoft Windows

without a mouse).

Support both kinds of input.

SUGGESTED APPROACH Use scrollable screens and wherever it is possible resizable screens (i.e. the

content adapts to the screen size. An example is Wise Pilot2 game screen).

5.3 Network support

Protocols

Management of heterogeneous clients

Deliverable ID: D3

Page : 21 of 31

Version: 3.2
Date: 10-Sept-2004

Status : Final
Confid : Public

 Copyright WISE Consortium 21

J2ME specification states that, at least in the first release, only HTTP has to be supported by all producers.

That is because HTTP is independent from the underlying protocols while mobile networks run on many different

protocols (at least if we use a worldwide point of view). So the common Internet TCP/IP layer is not mandatory.

But many producers support also TCP/IP as well as UDP/IP. This last protocol, when supported, is by far the

fastest protocol (maybe also because of network packet-based infrastructure) and, despite its unreliability, is a

must-choice for real-time applications. In this context real-time definition may vary depending on network speed

and, until now, any wireless solution is many times slower than a wired one.

But this area is an evolving one and things are likely to change in the near future. UMTS, for example, can

lead to a significant performance upgrade.

PROBLEM Transport protocols other than HTTP are not widely supported.

You may have, however, the need to use other lighter transport protocols because

of the high latency and low bandwidth of the wireless networks.

ADVICE If you use WML, you don’t have to worry about these issues. You simply don’t

have any choice.

SUGGESTED APPROACH HTTP is the most widely supported protocol. Use HTTP connections wherever it

is possible.

SUGGESTED APPROACH Other transport protocols may be very useful but not supported by the

implementation or not well handled by the carriers’ networks. In general it is

advisable to push the choice of the transport protocol at the lowest layer of the

application. Application’s logic should not be influenced (or not rely too much

on) the transport mechanism.

5.4 Computing power
It seems that Moore’s law still applies also to wireless devices. With that in mind programmers can develop

applications thinking they will have in few years enough computing power for almost every application as they do

now for desktops. The only limit to this assumption is that wireless devices have big power constraints that can

dramatically limit their growth. Even high-end PDA’s batteries last nothing but a few hours before needing

recharge. Mobile phones need to work for a far longer time, thus it is possible that their computing power will be

limited by energy constraints.

Advances in batteries technology can obviously dramatically change this assumption.

Java is recognized as a CPU-hungry technology. Even if with J2ME a lot of features have been discarded and

others have been deeply optimized, especially regarding the Java Virtual Machine, compatibility among devices

has this big price to be paid: performance. Everything in a Java program should be optimized not to waste

resources, so that Java speed-up in building code can be lost in optimization (which is not commonly necessary

using C or other compiled languages).

PROBLEM Computing power of wireless devices is low, and battery consumption is a

problem.

ADVICE Be aware that the performance of J2ME is, as for Java, quite low. It is a CPU and

memory hungry technology, so its performances can be seriously affected by the

lack of resources on the device.

SUGGESTED APPROACH If you are using J2ME, try to optimise the code as much as possible (i.e.

instantiate object only when they are really needed, do not rely too much on the

efficiency of the garbage collector, etc…). J2ME programming is more similar to

C approach than to Java itself.

Management of heterogeneous clients

Deliverable ID: D3

Page : 22 of 31

Version: 3.2
Date: 10-Sept-2004

Status : Final
Confid : Public

 Copyright WISE Consortium 22

5.5 Memory and storage
Small devices have a very limited memory capacity. So code must be optimized also for space. This is true

particularly because Java stores names of classes, methods and variables directly in the bytecode. A technique

known as “Obfuscation” can reduce the size of the bytecode by changing, when compilation takes place, every

name in a shorter string based on statistical analysis. For example if the method called

“getVariableNamedGoofy()” is the most frequently used method of a class, it will be renamed as “a” thus

effectively reducing bytecode size. This approach (originally used for protecting code from decompilation) can

lead to significant code reduction.

Another issue that must be considered is that stored images take a lot of overhead that can be shared if all the

pictures are instead packed in a single file: compressed images carry an header with information on size, color

depth and so on; if this header is shared, we have a considerable saving of space. Moreover, Huffman-like

compression (used for image data) works better with big quantities of data. Using many small pictures may mean

having the header same in size as the image data, so using a single image instead (and then clipping it when

needed) can reduce roughly the storage size by half!

PROBLEM The storage capacity of mobile devices is usually very low. Code and resources

must be optimized for space.

ADVICE If you don’t have bandwidth problems (or you use WML), you can download

images from a remote URL. Else, images have to be hardcoded in the application.

SUGGESTED APPROACH If you are using J2ME, use a code obfuscator to reduce the size of bytecode. This

also helps in making the bytecode harder to be reverse-engineered.

SUGGESTED APPROACH If you are using J2ME, pack all the images in a single file (or in a few files) so

that their storage occupation is the lowest (just one header, and more efficient

compression results). You pay this with bigger occupation of run-time memory

when you have the need of splitting the big file into different pictures, but in

general the suggested approach is more efficient.

5.6 Security issues
Limited computing power as well as mobility have important consequences on security.

Many Internet services rely on privacy and secrecy. While communication between mobile terminals and the

network is generally considered secure from third party interception, that doesn’t mean that the network operator

cannot easily read information sent. More, when those information exit from the private mobile network and go

through the Internet, they are by default sent in a unencrypted manner.

For those reasons the entire digital communication must be considered insecure.

In the WAP environment WTLS (Wireless Transport Layer Security) has become a standard for securing

communications. Security in the WAP architecture enables services to be extended over potentially mobile

networks while also preserving the integrity of user data. The denial of service is also prevented. The wireless

mobile networks set many requirements to the security layer. The existing Internet secure protocols cannot be used

in mobile networks without adaptation.

One of the most important requirement is to support low data transfer rates. For instance, the SMS as a bearer

can be as slow as 100 bit/s. The amount of overhead must be kept as small as possible because of the low

bandwidth. Compared with the industry-standard Transport Layer Security (TLS), formerly known as Secure

Socket Layer (SSL), datagram transport layer must also be supported because of the nature of the wireless mobile

network. The protocol should handle lost, duplicated, and out-of-order datagrams without breaking the connection

state.

Management of heterogeneous clients

Deliverable ID: D3

Page : 23 of 31

Version: 3.2
Date: 10-Sept-2004

Status : Final
Confid : Public

 Copyright WISE Consortium 23

Figure 5-1 WAP Protocol Stack

But while most modern mobile terminals support WTLS on WAP, this protocol cannot be used from Java. No

secure service can be provided using standard libraries. Limited processing power and the Java language’s

performance discourage programmers to set-up a security layer for their applications. A “simple” MD-5 calculation

(for enabling integrity check) on each network packet could be overwhelming for a mobile processor. While some

libraries are available (i.e. bouncycastle, which is also open-source) they are to be intended for use just with high-

end Java-enabled PDA.

Obviously consequences affect the type of service that can be provided without reducing the number of

potential customers.

Recently Motorola and Sun have standardized Bluetooth API for J2ME access. Security support within that

API should be investigated.

PROBLEM Secure transactions support requires computational speed and bandwidth

availability.

ADVICE In the WAP environment WTLS (Wireless Transport Layer Security) has become

a standard for securing communications. So secure communications are possible.

SUGGESTED APPROACH If you need secure communications, design your application with the WAP

architecture. Implementing the traditional encryption algorithms on mobile

devices processors can be unfeasible, so be aware of it if you choose to develop

with a programming language.

5.7 Hardware access
J2ME provides no support for JNI. This means that no call can be made from Java to the underlying operating

systems’ APIs. Programmers can make no native extensions. This approach has been chosen in order to simplify

support in the VM and not to force companies to leave a possible “hole” in their Java implementations. Even

hackers have a difficult time trying to reverse engineer the C-code of the operating system.

But this also means that programmers have no access to the underlying hardware (driver) layer and that any

extension could be in a few years surpassed by a new technology or standardized API released by Sun.

But basic functions implemented in J2ME aren’t really enough for many application, thus many extensions

have already been developed by some big industries.

Particularly important are the Siemens Game API, a set of classes developed to enhance graphics and audio

support as well as phone utilities (like phone calls or SMS), file system and network access; but the most used one

is the iAppli API (available only on phones for the Japanese market) that greatly enhances graphic capabilities.

Programmers who want to develop code for heterogeneous clients should port those APIs, or avoid using them.

This means that a common set of API is something that matters.

PROBLEM Using device-specific features can be done through Manufactures’ provided APIs,

where available.

SUGGESTED APPROACH Try to avoid the use of manufacturers’ provided APIs, unless you have a very

Management of heterogeneous clients

Deliverable ID: D3

Page : 24 of 31

Version: 3.2
Date: 10-Sept-2004

Status : Final
Confid : Public

 Copyright WISE Consortium 24

specific target. Heterogeneous clients means first of all different manufacturers!

SUGGESTED APPROACH In J2ME, keep to the standards (CLDC+MIDP), so you can say that your

application complies with a widely supported standard. That’s the best you can do

to ensure that your application successfully hits the most of platforms.

5.8 Debug: how good are emulators?
There is a dangerous issue that arises at the end of heterogeneous clients software development: how much

emulators that are commonly used during the developing phase are compliant with real devices. The fact is that,

despite programmers’ efforts, no emulator is 100% compliant with the device that emulates. It could be just that

commonly on emulators applications run faster than on real devices, it could be a difference in memory behaviour

or it could be a less traceable strange attitude in displaying graphics or in handling threads. The fact is that such

problems are by definition unpredictable and commonly arise at the final stage. When tracked they can lead to a

major problem, forcing developers even to rethink big parts of the application.

The only feasible solution here is to get, in the very earliest stage of the developing process, real devices for

which the application is being developed (or, at least, those critical for certifying it) and to test frequently on them.

Another issue in deploying the application in real devices is that no easy debugging is possible. Some

manufactures offer some “live” debugging capabilities, but the majority still lack this feature. That means that

debugging on real devices should be “hand-made”.

PROBLEM Device emulators are often not compliant with real devices.

SUGGESTED APPROACH Try to get real devices for which the application is being developed (or, at least,

those critical for certifying it) and to test frequently on them. This might be

necessary even in the earliest stage of the developing process, because a

Manufacturer claimed feature could be, as a matter of fact, unavailable on the real

device.

SUGGESTED APPROACH When using emulators, be sure to set the emulated hardware capabilities very

close to those of the real device. The results in the emulation can vary greatly.

5.9 Developing position-aware applications
The availability of GPS receivers is in continuous increase. They come in the form of a hardware card that

connects to the serial port of the mobile device. Applications can see the GPS interface as a serial port on which a

continuous flow of data is output. The raw data produced by the GPS hardware need to be interpreted by the

application in order to calculate the device position (latitude and longitude). This requires basic trigonometric

calculations.

3G mobile networks allow a network-based positioning system; since an UMTS device always listens three base

stations at the same time, it is possible to determine with quite a satisfactory precision the position of the device

even without a satellite.

PROBLEM How to use GPS for positioning in an application targeted to a mobile device?

SUGGESTED APPROACH Use a wireless SDK that allows programming with the Operating System APIs.

Keep in mind that your application needs to access the serial port. In J2ME this

can be done only using proprietary or at least non standard, platform-dependent

API or JNI, Java-Native Interface (though serial support has been standardized on

MIDP2.0). In Personal Java this is instead straightforward though you may have

the bitter surprise that your Personal Java implementation does not support the

Management of heterogeneous clients

Deliverable ID: D3

Page : 25 of 31

Version: 3.2
Date: 10-Sept-2004

Status : Final
Confid : Public

 Copyright WISE Consortium 25

needed package (javax.comm).

Another way may be access the GPS receiver by Bluetooth connectivity. About

this there is JSR82 standardized by Motorola but implemented, as far as we know,

only on some Nokia Symbian mobile phones).

GPS based applications are usually thought for a PDA or Notebook. Such devices

generally offer development kits for their Operating Systems (i.e. Symbian OS,

Windows Mobile), which allow the programmer to access and use all the system

resources.

5.10 Databases
Using a database to store data can dramatically simplify the development of bigger applications and reduce the

number of programming errors, thanks to a highly standardized data access model.

However, low-end wireless devices, like mass-market mobile phones, can’t support a database. The CLDC/MIDP

(or BREW, or the like) technology substantially creates a protected environment in which applications run.

Applications can’t communicate with other applications on the same device or use directly system resources. The

database concept itself is too “big” for a mobile phone.

Remote database access. Data are stored remotely on a database. The client uses a standard interface (i.e. JDBC)

to communicate with the remote database and retrieve/upload information. This approach is generally feasible on

almost all the platforms, though is rare to find custom JDBC drivers developed for MIDP/CLDC due to the many

limits of this platform for this kind of applications.

Embedded database. The mobile device is complex enough to allow some kind of database to run and be

accessed locally. This generally implies the usage of a mobile operating system SDK (i.e. Symbian, Linux

Embedded, Windows Mobile).

PROBLEM How to use a real, third party database for data access in an application developed

for a limited device?

ADVICE When developing wireless internet applications targeted to low-end devices, data

should be stored remotely rather than locally. For instance, J2ME offers a rather

primitive support for local data storage: the RMS. It is byte-oriented, structured

data access does not go any further than providing a set of records, and generally

the implementations are terribly slow. It is not meant to be used dynamically but

just to save a bunch of configuration data (i.e. login access information or the high

score in a game).

If the application is meant to have a heavy data component and this data has to be

shared with other users, then a remote database accessed anyhow is the best

solution.

SUGGESTED APPROACH Using a local database on wireless devices (and for a wireless device here we do

not mean a laptop with WI-FI support) is still something challenging. Windows

Mobile and Linux Embedded are some of the few embedded Oss that offer the

full support to connect to a database and communicate with it. The required APIs

are part of the SDK. Consider using such systems if your wireless application is

complex enough to need a relational or object oriented embedded database for

storing data.

SUGGESTED APPROACH For guidelines about accessing a remote database, see the next point.

Management of heterogeneous clients

Deliverable ID: D3

Page : 26 of 31

Version: 3.2
Date: 10-Sept-2004

Status : Final
Confid : Public

 Copyright WISE Consortium 26

PROBLEM The application needs to access remote data stored in a database.

SUGGESTED APPROACH Database drivers are often written with a mobile OS SDK. “Sandbox”

technologies (i.e. J2ME, BREW, etc…) are generally too limited for that.

However, there exist some minimal JDBC drivers written in J2ME.

To develop database drivers on the mobile client, Personal Java or C/C++ in an

OS SDK is preferable.

6 Related work
Some w3c working groups (mainly Device Independence WC, refer to http://www.w3.org/2001/di/) and some

other organizations like www.uiml.org, are working on the concept of a device independent presentation of data for

the web.

Briefly the UIML group is designing rules for creating uiml (xml) parsers for enabling representation in many

areas (from Java to VoiceXML to WML) while Device Independence WC is working on the more general concept

of device independence for web that enables web content to be delivered to any kind of devices.

In practice one can say that the UIML group is working on a kind of adaptation layer for data in order to

deliver them to many devices. And the adaptation layer is an idea from Device Independence WG that sees it as a

needed part of the whole process.

Figure 6-1: from w3c Device Independence Principles

What follows is a concept demonstration of uiml:
<?xml version="1.0"?>
<!DOCTYPE uiml PUBLIC
 "-//UIT//DTD UIML 2.0 Draft//EN"
 "UIML2_0d.dtd">
<uiml>
 <interface>
 <structure>

Management of heterogeneous clients

Deliverable ID: D3

Page : 27 of 31

Version: 3.2
Date: 10-Sept-2004

Status : Final
Confid : Public

 Copyright WISE Consortium 27

 <part name="tabledeck" class="Wml">
 <part name="testcard" class="Card">
 <!-- Sub Menu -->
 <part name="testp" class="P">

 <part name="header" class="RichText">
 <style>
 <property name="content">Table of Images</property>
 </style>
 </part>

 <part name="testtable" class="Table">
 <style>
 <property name="align">center</property>
 <property name="columns">2</property>
 </style>

 <!-- First table row -->

 <part name="row1" class="TR">
 <part name="r1c1" class="TD">
 <part name="r1c1Cont" class="RichText">
 <style>
 <property name="content">Floppy</property>
 </style>
 </part>
 </part>
 <part name="r1c2" class="TD">
 <part name="r1c2Cont" class="Img">
 <style>
 <property name="alt">Floppy</property>
 <property name="src">Icons/flop.bmp</property>
 </style>
 </part>
 </part>
 </part>

 <!-- Second table row -->

 <part name="row2" class="TR">
 <part name="r2c1" class="TD">
 <part name="r2c1Cont" class="RichText">
 <style>
 <property name="content">Clock</property>
 </style>
 </part>
 </part>
 <part name="r2c2" class="TD">
 <part name="r1c2Cont" class="Img">
 <style>
 <property name="alt">Clock</property>
 <property name="src">Icons/clock.bmp</property>
 </style>
 </part>
 </part>
 </part>

 <!-- Third table row -->

 <part name="row2" class="TR">
 <part name="r3c1" class="TD">
 <part name="r3c1Cont" class="RichText">
 <style>
 <property name="content">Email</property>
 </style>
 </part>
 </part>
 <part name="r3c2" class="TD">
 <part name="r1c2Cont" class="Img">
 <style>
 <property name="alt">Email</property>
 <property name="src">Icons/mail.bmp</property>
 </style>
 </part>
 </part>
 </part>

 </part>

Management of heterogeneous clients

Deliverable ID: D3

Page : 28 of 31

Version: 3.2
Date: 10-Sept-2004

Status : Final
Confid : Public

 Copyright WISE Consortium 28

 </part>
 </part>
 </part>
 </structure>
 </interface>
</uiml>

The above code can be automatically translated in, say, WML obtaining:
<?xml version="1.0"?>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"
 "http://www.wapforum.org/DTD/wml_1.1.xml">

<!--
 This .wml file was automatically produced from a User Interface Markup
 Language (UIML) file by the UIML-to-WML renderer version 0.3c
 from Universal Interface Technologies Inc.

 See www.universalit.com and www.uiml.org for more information

 Source .uiml file: Table.uiml
 Translation date: Mon Sep 11 19:46:28 EDT 2000
-->
<wml>
 <card id="testcard">
 <p>
 Table of Images
 <table align="center" columns="2">
 <tr>
 <td>
 Floppy
 </td>
 <td>

 </td>
 </tr>
 <tr>
 <td>
 Clock
 </td>
 <td>

 </td>
 </tr>
 <tr>
 <td>
 Email
 </td>
 <td>

 </td>
 </tr>
 </table>
 </p>
 </card>
</wml>

And this lead to a representation on a mobile browser like this:

The important fact is that a common representation (uiml) can be automatically rendered on different devices

without any further human customization.

Management of heterogeneous clients

Deliverable ID: D3

Page : 29 of 31

Version: 3.2
Date: 10-Sept-2004

Status : Final
Confid : Public

 Copyright WISE Consortium 29

However, there can be some limits. The same class on different devices (where, for class, in uiml we intend the

object of the representation, let’s say a button) can be rendered very differently on different clients. The result can

be poorly looking and barely usable. The creator has no control (or just a very limited one) over the final

representation of the data and, while this implies a lot less work for developers, drawbacks also exist.

In the visual era, appearance counts much, particularly in some area like, for example, entertainment. For

customers to buy, everybody knows that a beautiful “box” is essential.

And this common representation risks to be limited by capabilities available (and implemented) on every

device.

7 Conclusion
Developing wireless applications for portable devices is an order of magnitude more difficult than developing

the same services for standard desktop computers. The lack of resources, both hardware (memory, processing

power) and perceptual (screen size, input devices), the lack of tools and standardization caused by the great variety

of devices available and by the manufacturers’ race to acquire the highest portion of the market at all costs, all

make it very difficult to create a truly portable service in a short time.

Therefore, a lot of care must be taken when approaching new software development for this class of devices in

order to make sure that the costs of development and maintenance are bearable and still leave a margin for profit.

Unlike many other situations in software development, this is mostly a matter that needs to be tackled from a

technical perspective, during the whole lifecycle of the application.

For this reason in this document we showed several development approaches, including tools, languages and

platforms for both the Fat Client and Thin Client architectures, outlining pros and cons for them from a technical

and economic perspective.

We then outlined the common issues faced by developers when developing services in terms of user

experience (User interface and graphics, Input management), application functionality (Network support,

Computing power, Memory and storage, Security, Hardware access) and development (tools and emulators),

showing some of the best practices both discovered during the course of the WISE project and from other sources.

A lot of work still needs to be done in this area, and many standardization efforts are ongoing, but finding a

unique approach for successful software development over wireless devices is still a research area that needs much

exploration.

Management of heterogeneous clients

Deliverable ID: D3

Page : 30 of 31

Version: 3.2
Date: 10-Sept-2004

Status : Final
Confid : Public

 Copyright WISE Consortium 30

References

1. Boggio, D., Forchino, F., Ricciardi, S., “Pilot 2 Requirements for WISE Iteration I”.

Requirements Specification for Pilot 2, WP4, Deliverable D11 (part A), IST-2000-30028 Project

WISE (Draft), Version 00.02, Mar. 2002.

2. Forchino F., Negro Ponzi M., Tiella R., "Architecture for Pilot 2", Deliverable D11 (part B),

IST-2000-30028 Project WISE (Draft), Version 01.04, 30, Sep. 2002.

3. http://java.sun.com/j2me/ for J2ME specifications and API

4. Qusay H. Mahmoud, Learning Wireless Java, O’Reilly, January 2002, ISBN 0-596-00243-2

5. David Fox, Roman Verhovsek, Micro Java Game Development, Addison Wesley, April 2002,

ISBN 0-672-32342-7

6. http://www.w3.org/TR/2001/WD-di-princ-20010918: Device Independence Principles, Working

Draft, 19 September 2001

7. http://www.wapforum.org

8. http://www.w3schools.com/wap/

9. http://www.uiml.org/ and http://www.harmonia.com/resources/tutorials/index.htm

10. http://www.qualcomm.com/brew

11. http://www.mobilegprs.com and http://www.3gamericas.org and http://www.gsmworld.com

12. http://www.nttdocomo.com and http://developpeur.journaldunet.com

13. http://www.gsacom.com/

14. Windows Mobile: http://www.microsoft.com/windowsmobile/default.mspx

15. Symbian OS: http://www.symbian.com/

Management of heterogeneous clients

Deliverable ID: D3

Page : 31 of 31

Version: 3.2
Date: 10-Sept-2004

Status : Final
Confid : Public

 Copyright WISE Consortium 31

Copyright Notice

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun

Microsystems, Inc.

Many of the designation used by manufacturers and sellers to distinguish their products are claimed

as trademarks. Use of a term in this paper should not be regarded as affecting the validity of any

trademark or service mark.

