
 Copyright WISE Consortium

Title:
Architectural Guidelines

Version: 2.0
Date : 23 Oct 03
Pages : 37

Author(s):
E. Niemela, P. Lago, J. Kalaoja, A.
Tikkala, M. Matinlassi, Marco
Torchiano, P.Kallio, A. Taulavuori

To:
WISE CONSORTIUM

The WISE Consortium consists of:

Investnet, Motorola Technology Center Italy, Sodalia s.p.A, Sonera,
Solid EMEA North, Fraunhofer IESE, Politecnico di Torino, VTT
Electronics

Printed on:
15-Dec-03 10:49

Status: Confidentiality:

[
[
[
[

X

]
]
]
]

 Draft
 To be reviewed
 Proposal
 Final / Released

[
[
[

X

]
]
]

 Public
 Restricted
 Confidential

- Intended for public use
- Intended for WISE consortium only
- Intended for individual partner only

Deliverable ID: D4 (Part A)

Title:

Architectural Guidelines

Summary / Contents:

This document is a part of the deliverable D4 produced in the task 2.1 of the Wise project. Deliverable
D4 includes four parts: Part A: Architectural guidelines, Part B: the WISA (Wireless Internet Service
Architecture) architectural knowledge base and its reference architecture (WISA/RA), Part C: Analysis
of the pilot architectures, and Part D: Handbook of reusable architectural assets.

This document presents a set of guidelines for describing the architecture of software systems in an
abstract way, and for detailing their design in a more concrete way (for their implementation).

WIRELESS INTERNET SOFTWARE ENGINEERING IST-2000-30028

Architectural Guidelines

Deliverable ID: D4 (Part A)

Page : 2 of 37

Version: 1.06
Date: 23 Oct 03

Status : Proposal
Confid: Restricted

 Copyright WISE Consortium

TABLE OF CONTENTS

1. Overview of Architectural Documents .. 4

2. Introduction .. 5

3. Abbreviations ... 7

4. Terminology ... 8

5. Viewpoints .. 10

6. Conceptual Viewpoints ... 14
6.1 Overview... 14
6.2 Conceptual Structural Viewpoint .. 14

6.2.1 System context .. 14
6.2.2 Domain Information models .. 16
6.2.3 Functional structure ... 16

6.3 Conceptual Behavioral Viewpoint .. 18
6.3.1 Collaboration diagram.. 18

6.4 Conceptual Deployment Viewpoint .. 19
6.4.1 Deployment diagram.. 19

6.5 Conceptual Development Viewpoint.. 20
6.5.1 Business Model.. 20
6.5.2 Topology diagram .. 21

7. Concrete Viewpoints ... 22
7.1 Overview... 22
7.2 Concrete Structural Viewpoint.. 22

7.2.1 Essential information-oriented aspects ... 23
7.2.2 Essential computational-oriented aspects .. 23

7.3 Concrete Behavioral Viewpoint .. 24
7.4 Concrete Deployment Viewpoint.. 26

7.4.1 Deployment diagram.. 26
7.5 Concrete Development Viewpoint.. 26

7.5.1 Interfaces ... 26
7.5.2 Development structure .. 27
7.5.3 Technology layers.. 27

8. Interface description model.. 28
8.1 The architectural level interface description... 28
8.2 The transformation level interface description ... 29
8.3 The implementation of the interface description .. 30
8.4 an Example of the use of the model .. 32

9. References.. 36

Architectural Guidelines

Deliverable ID: D4 (Part A)

Page : 3 of 37

Version: 1.06
Date: 23 Oct 03

Status : Proposal
Confid: Restricted

 Copyright WISE Consortium

CHANGE LOG

Vers. Date Author Description
1.06 Oct 7, 2003 Anne Taulavuori (VTT), Jarmo

Kalaoja (VTT)
• Added interface description model

1.05 Dec 5, 2002 Jarmo Kalaoja (VTT), Marco
Torchiano (Polito)

• Added an overview of D4 parts in intro
• Fixed some terminology definitions
• Improved language

1.04 Oct. 24 2002 Eila Niemelä • Final version for review
1.03 Oct. 15. 2002 Mari Matinlassi, Päivi Kallio (VTT) • Version for review in Kaiserslautern.
1.02 Aug. 7.2002 Jarmo Kalaoja (VTT) • This document (D4 Part A) now contains

only guidelines for the viewpoints and
their notation from document D4 v1.1, the
rest of the previous document versio is
moved to document D4 Part B v0.1

• Removed development process related
issues from this document and tried to
simplify the document to be more
readable

• Examples of conceptual notation added.
Instantiated business model moved to
conceptual development viewpoint and
networked structure moved to conceptual
structure viewpoint as system context.

• Examples for table formats for
responsibilities and interfaces added.

1.01 July 30, 2002 P. Lago (Polito) • Applied standard template for WISE
documents

• Proposal for harmonized deployment and
development viewpoints for conceptual
and concrete architecture (see AP2 and
AP3 Oulu Meeting, June 2002): see
tables 3, 4, 5 and description of
conceptual and concrete development
viewpoints

1.00 March 06, 2002 P. Lago (Polito) • Inserted this history table.
• Inserted definitions for notation, service

(detailed), application.
• Expected definition for service (business

and technical perspectives).
• Inserted explanation of D4 objective and

stakeholders.
• Inserted table and explanation about how

to use viewpoints/notation in various
development stages.

APPLICABLE DOCUMENT LIST
Ref. Title, author, source, date, status Identification
1 Template for Pilots Architecture T_Pilot_Architecture.doc
2 Wise Reference Architecture (Wisa) D4 (Part B)
3 Architecture for Pilot 1 D10 (Part B)
4 Architecture for Pilot 2 D11 (Part B)
5 Architecture for Pilot 3 D6b

Architectural Guidelines

Deliverable ID: D4 (Part A)

Page : 4 of 37

Version: 1.06
Date: 23 Oct 03

Status : Proposal
Confid: Restricted

 Copyright WISE Consortium

1. OVERVIEW OF ARCHITECTURAL DOCUMENTS
The deliverable D4 contains the outcome of the work done within task 2.1 (Architecture) of WP2 –
Technology.
This deliverable has been split into four distinct parts:

• Part A: Architectural Guidelines
• Part B: WISA architectural knowledge base (WISA) and Reference Architecture (WISA/RA)
• Part C: Analysis of Pilot Architectures
• Part D: Architecture Handbook

D4 Part A presents a set of guidelines for describing the architecture of software systems in an abstract
way, and for detailing their design in a more concrete way (for their implementation).
D4 Part B presents part of the WISA knowledge base for wireless service engineering. It is made up of
three major parts: 1) the taxonomy of wireless services, 2) the architectural style and pattern guidelines, and
3) WISE Reference Architecture (WISA/RA). These parts are used in the development of the pilot services
in the 2nd and 3rd iterations of the Wise project. The reusable architectural assets are in Part D.
D4 Part C presents the results of analyses of Pilot architectures (Pilot 1 and Pilot2)
D4 Part D contains a set of reusable assets that can be used to build wireless services. This document
should be read after the knowledge contained in D4B has been assimilated. The document provides three
types of reusable architectural assets: 1) typical architectures that can be used as starting points to develop
wireless service architectures; 2) architectural styles and patterns that can be used to develop services, and
3) a existing services that can be re-used in new services.

The documents are linked with each other and with the pilots’ architectural documents, as show in Figure 1.
The guidelines of D4A provide a common structure and notation for the pilots’ architectures. This allows the
definition of the reference architecture (D4B), the identification of patterns and typical architectures (D4D),
and the analysis of the pilot architectures (D4C).
 PilotArchitecuresD4AArchitecturalGuidelinesPilotPrestudies D4B, D4DWISAreference architectureD4CAnalysis of PilotArchitectures

Figure 1. Organization of Architectural Documents

Architectural Guidelines

Deliverable ID: D4 (Part A)

Page : 5 of 37

Version: 1.06
Date: 23 Oct 03

Status : Proposal
Confid: Restricted

 Copyright WISE Consortium

2. INTRODUCTION

This document presents a set of guidelines that will be adopted in the WISE consortium to describe the
architecture of software systems. Figure 1 sketches the complex relationships between this document, other
documents and the iterative approach of the WISE project.

The main purpose of the architectural guidelines is to provide a unified and organized approach to the
description of the software architecture. The architecture is described both from an abstract conceptual
perspective and a detailed concrete one.

In particular, the stakeholders of this document are both technical and non-technical people. The former
have to describe in detail those generic entities in terms of their implementing components. The latter have
to understand the generic architectural entities making up a type of service.

The guidelines are basically made up of (1) a set of viewpoints to model the conceptual/concrete
architecture (each describing a particular architectural aspect), and (2) the notation (i.e. languages and/or
visual conventions) selected to model and represent each viewpoint. The views and diagrams in the
architectural documents are based on these viewpoints and conform to the notation.

The contents of specific architectural documents depend on the needs emerging during the development
process. Usually they contain one or more architectural views, selected among those defined by the
guidelines. The table of contents of the architectural documents can be organized based on the selected
views. A template for such a kind of documents is presented in “Template for Pilots Architecture” (Ref 1).

The basic concepts of software architecture with and their relationship are described in the metamodel
shown in Figure 2 (adapted from [7]).
The architecture is essentially a description of a software system, from several viewpoints. Its purpose is to
address the concerns of the system stakeholders.
The description consists of several views, each conforming to a viewpoint. In practice the views are made
up one or more models or diagrams.

Architectural Guidelines

Deliverable ID: D4 (Part A)

Page : 6 of 37

Version: 1.06
Date: 23 Oct 03

Status : Proposal
Confid: Restricted

 Copyright WISE Consortium

Figure 2. A metamodel of architectural descriptions (from IEEE1471)

Architectural Guidelines

Deliverable ID: D4 (Part A)

Page : 7 of 37

Version: 1.06
Date: 23 Oct 03

Status : Proposal
Confid: Restricted

 Copyright WISE Consortium

3. ABBREVIATIONS
BSS Business Support Systems
CLDC Connected Limited Device Configuration
CRM Customer Relationship Management
J2ME Java 2 Micro Edition
MIDP Mobile Information Device Profile
OSS Operating Support Systems
SLA Service Level Agreement based on Monitoring and Reporting tools
SLC Service Logic Component
TOM Telecom Operations Management
VP Viewpoint
COTS Commercial Off The Shelf
MOTS Modifiable Off The Shelf

Architectural Guidelines

Deliverable ID: D4 (Part A)

Page : 8 of 37

Version: 1.06
Date: 23 Oct 03

Status : Proposal
Confid: Restricted

 Copyright WISE Consortium

4. TERMINOLOGY
• Software architecture it is the structure or structures of the system, comprising the software

components, the externally visible properties of those components and the relationships among them
[2]. Software architecture includes also the principles and guides that control the design and evolution in
time [13, 14].

• Conceptual architecture describes a system from an abstract level, omitting the implementation details.
• Concrete architecture it is detailed description of a system that addresses the implementation details.
• Reference architecture is a generic architecture that addresses a set of applications.
• Specific architecture describes the architecture of a specific system (e.g. the pilots in WISE); it can be

the instantiation of a reference architecture.
• Architectural view is a representation of a whole system from the perspective of a related set of

concerns [7].
• Viewpoint is a specification of the conventions for constructing and using an architectural view by

establishing the purposes and audience for a view, and the techniques for its creation and analysis [7].
It can be expressed as a template used to develop specific views.

• Architectural style defines a class of architectures and is an abstraction for a set of architectures. A style
is determined by a set of component types, a topological layout of the components, a set of semantic
constraints and a set of connectors [2].

• Architectural pattern expresses fundamental structural schema for software systems, which are applied
for high-level system subdivisions, distribution, interaction and adaptation [4]. An architectural pattern is
strictly described and commonly available.

• Design pattern describes a recurring structure of communicating components, which solves a general
design problem in a particular context [6]. Design patterns are micro architectures, in that they refine the
subsystems or components of a software system, or the relationships between them [19]. Alone, they do
not guarantee a good overall architecture.

• Software component is a unit of composition with contractually specified interfaces and explicit context
dependencies only [16]. This means that the component clearly specifies all dependencies with its
environment, and that its interfaces realize all existing responsibilities towards potential clients. Often a
component is an atomic unit of deployment.

• An interface defines a contract between a component requiring certain functionality and a component
providing that functionality. The interface represents the main tool to specify the functionality that a
component provides [3].

• A framework is a set of classes that embodies an abstract design for solutions to a family of related
problems [8].

• Software product family is a set of systems belonging to the same application domain.
• Software product line is a group of products sharing a common, managed set of features that satisfies

specific needs of a given market [2]. Software products are instances of the software product line. Each
product adheres to a specific market strategy and application domain; products share architecture and
are built from the components included in the product line.

• (Software) Product-line architecture (PLA) is adaptable architecture that is applied to the product
members of a product line and from which the software architecture of each product member can be
derived. PLA is software architecture and a set of reusable components shared by a family of products
[2].

• A software feature represents a prominent or distinctive user-visible aspect, quality or characteristic of a
software system or systems [10]. It possibly has to comply with a set of functional and quality
requirements [3].

• Mandatory feature is a feature that must always be included to a product of a product family [10, 9].
• Optional feature is a feature that is contained in one or some products of a product line but not in all

products [1, 10, 9, 11].
• Alternative feature: is one of the possible features that can fit into one of the placeholders defined by the

architecture. Alternative features cannot coexist with one other in the same system [1, 10, 9,11].

Architectural Guidelines

Deliverable ID: D4 (Part A)

Page : 9 of 37

Version: 1.06
Date: 23 Oct 03

Status : Proposal
Confid: Restricted

 Copyright WISE Consortium

• Software platform is considered as a means to provide shared functionality, but without any architectural
constraints [3]. It is frequently referred as the top-level product-line asset set.

• Application domain is a set of current and future applications, which share a set of common capabilities
and data [10].

• Software reuse is a process of implementing or updating software systems using existing software
assets. Assets can be defined as software components, objects, software analysis and design models,
domain architecture, database schema, code, documentation, manuals, standards, test scenarios, and
plans [15].

• Vertical reuse is reuse of components from other systems within a domain. Horizontal reuse is reuse of
components from other domains [15].

• Service is the capability of an entity (the server) to perform upon request of another entity (the client),
an act that can be perceived and exploited by the client. From a business perspective, or from a
technical perspective, this definition might change.

• Service architecture is architecture of applications and middleware. It is a set of concepts and principles
for the specification, design, implementation and management of software services [17].

• Middleware is software that is located between applications and the network layer, and is independent
from operating systems. It provides the illusion of a global system in which separate components
behave like a centralized system [18].

• A method is a description of how to conduct a process [12]. A process is a set of activity which takes
place over time and which has a precise aim regarding the result to be achieved. The method
description defines and organizes a collection of techniques and a set of rules that establishes how to
conduct an activity.

• The set of rules of the method states by whom, in what order, and in what way the techniques are used
to accomplish the method objective.

• Techniques consist of languages or associated modeling notations.
• Customer value analysis is an approach that seeks to quantify qualities that affect a customer’s decision

to buy a particular product. Herein, the term value denotes product’s perceived overall benefit relative to
its cost [5].

Architectural Guidelines

Deliverable ID: D4 (Part A)

Page : 10 of 37

Version: 1.06
Date: 23 Oct 03

Status : Proposal
Confid: Restricted

 Copyright WISE Consortium

5. VIEWPOINTS

To select the appropriate viewpoints for the description of the Wise software architecture, we first have to
identify the stakeholders that use and build the architecture, and their main concerns that must be covered
by the selection of viewpoints. The concerns of stakeholders derive from the intention for which they need to
use the architecture description. The viewpoints are described in a standard form, by means of the template
presented in Table 1 (taken from [21]).

Table 1. The template to describe architecture viewpoints.

Framework element Description
Name The name of the viewpoint

Description The main responsibility of the viewpoint as part of an architectural specification

Concerns The concerns to be addressed by the viewpoint

Stakeholders The stakeholders that are especially addressed by the viewpoint

Intention How stakeholders use the view

Artifacts The artifacts of the viewpoint

Constraints What kind of information is needed in order to be able to create a view?

Functional validation Methods how to validate the functionality of a view

Quality validation The attributes and methods for quality validation

Language The language and notations to be used in constructing a view

The following table summarizes the software engineering stakeholders of Wise service architecture:

Table 2. Software engineering stakeholders.

Category Stakeholder Description
System architect Develops a system architecture, Hw/Sw partitioning
Service user Uses services defined by the service architecture
Service provider Provides services for service users

Services

Service developer Develops services for service providers
Component designer Designs components that provide services
Component integrator Integrates available components into services

Components

Component developer Designs, implements and tests software components
Product architect Creates a product architecture
Product developer Develops product specific part of software, integrates

components

Products

Product marketing Presenting product (variable) features to customers
Manager, assets
manager, reuse manager

Management, costs and benefits, business, technology
and reuse strategies

Software architect Develops software product (line) architecture
Testing engineer Tests software packages, integration testing

Software

Maintainer Upgrades products/systems

Some of the main intentions and stakeholder concerns that must be covered by viewpoints are:
• Getting an overview of available services and their use

• Describe responsibilities and context of components
• Allocating and understanding the division of work

• Map services to components and vice versa
• Map specific services to generic services

Architectural Guidelines

Deliverable ID: D4 (Part A)

Page : 11 of 37

Version: 1.06
Date: 23 Oct 03

Status : Proposal
Confid: Restricted

 Copyright WISE Consortium

• Cluster the components to be developed into technology domains
• Considering the appropriateness of service architecture

• What quality issues are considered
• How qualities are attempted to be achieved with architectural styles and patterns and why these

qualities are important
• Understanding and integrating third party components

• Map the responsibilities of third party components into the service architecture

Even if their basic concern is similar, different stakeholders need information at different levels of
abstraction and aggregation. In order to differentiate the viewpoints along those needs, the service
architecture description is divided into conceptual software architecture and concrete software architecture.
In both of these abstraction levels hierarchy in descriptions is used to provide the right level of aggregation
for a stakeholder.

Four viewpoints are initially used at both abstraction levels: structural, behavior, deployment and
development. The structural viewpoint covers the concerns related to composition of information and
architectural components, whereas the behavior viewpoint considers the dynamic aspects of the
architecture. The deployment viewpoint shows allocation of architectural components into physical nodes of
computing and network environments. The development viewpoint shows work organization and choice of
technologies mapped to services and components. Design rationale should be recorded in each view for
analysis and reuse purposes [20].

Using these viewpoints the conceptual software architecture provides organization of functionality and
quality responsibilities into technology domains and services in them, collaboration between the services
and allocation of services into network nodes. The concrete software architecture provides hierarchical
containment of concrete software components and definition of interfaces and communication protocols
used between those components. The behavior of each component is described in detail and finally
components are allocated to hardware resources, i.e. processors. The viewpoints of conceptual software
architecture are defined in Table 3 [21]. The viewpoints of concrete software architecture are defined in
Table 4 [21].

The modeling notations are based on OMG UML [23] whenever possible. Extensions or specific notations
are defined when an architectural viewpoint needed in Wise cannot be expressed with UML standard set of
notations. Some restrictions on types of components and relations used in the diagrams are set for the
views on both the conceptual and concrete level. The use of notations is illustrated with example diagrams.
The restrictions of CASE tools may influence the actual outlook of the diagrams, especially in the concrete
level.

 Copyright WISE Consortium

Table 3. Summary of the elements of conceptual service architecture.

Name Conceptual structure Conceptual behavior Conceptual deployment Conceptual development
Description Mapping functional and quality

responsibilities to conceptual
structure.

Defining dynamic actions of and
within a system.

Allocation of units of
deployment to physical
computing units.

Presentation of the components to be
developed and acquired.

Concerns What services and components are
required?
What are the responsibilities of
services?
How are quality requirements met?

What kinds of actions does the
service architecture provide for
applications?
Which services do collaborate in
each action?
How are the actions related to each
other?

Which kinds of nodes are
there in a system?
What services have to be in
the same unit of deployment?
How can services be
allocated to nodes?

What services and components does the
company develop and what services are
acquired from third parties?
Who is responsible for a service?
Which standards and enabling technologies
do the services use?

Stakeholders System architects, service
developers, product architects and
developers, maintainers

System architect, component
designers, service developers

Service users, service
developers

Project manager, component acquisition

Intention Clustering responsibilities to
services. Management of
commonalties and variabilities.

Finding out how middleware
services are used.

Locating a service. Project planning and management.
Linking business strategies to technology
strategies.

Artifacts System context
Functional responsibilities
Functional structure
Domain information models
View design rationale

Collaboration models
Table of interaction scenarios with
services
View design rationale

Table of units of deployment
Deployment of entities
View design rationale

Instantiated Business model
Development model (units to be acquired
and developed)

Constraints Functional and quality requirements,
architectural styles and patterns are
selected for defined qualities

Co-operation with service users and
system architects
Incremental refinement of
collaboration scenarios regarding
defined qualities.

System architecture
Architectural styles and
patterns are selected for
defined quality attributes.

Business and technology strategies, road
maps.
Balancing quality attributes, development
time and cost.

Functional
validation

Operational scenarios of service
packages.

Collaboration scenarios of leaf
services.

Communication scenarios of
nodes/devices.

Risk analysis

Quality validation Analysis of variation points and
violations of architectural styles and
patterns.

Modifiability and maintainability Performance, security,
availability, maintainability,
variability in allocation

Maintainability and variability
Risk analysis

Language A set of extended UML notations. A set of UML notations. A set of UML notations. Not restricted.

Architectural Guidelines

Deliverable ID: D4 (Part A)

Page : 13 of 37

Version: 2.0
Date: 23 Oct 03

Status : Proposal
Confid. : Restricted

 Copyright WISE Consortium

Table 4. Summary of the elements of concrete service architecture

Name Concrete structure Concrete behavior Concrete deployment Concrete development
Description Decomposition at the lower aggregation

level.
Behavior of individual components
and interactions between
component instances.

Concrete hardware and
software components and
their relationships.

Realizations of software components and
their relationships to each other.

Concerns What are the concrete components
needed for a corresponding conceptual
component?
What are the interfaces needed?
How do services communicate with
external actors?

How does a concrete component
behave and response to an event?
What is the behavior of a set of
concrete components?

What nodes and devices are
there in a system and what
they have to do?
What concrete components
are allocated to each node
and device?

What is the realization of a service or a
component?
How does a service or a set of services relate
each other?
How could a service be configured?

Stakeholders Component designers, service developer,
product developers

Component designers, testing
engineers, integrators

Integrators, maintainers Product developers, assets managers

Intention Verification and validation of services. Verification and validation of co-
operation of services.

Assembling and adapting
services.

Maintaining asset repository.

Artifacts Information structure
Inter-component diagrams
Intra-component diagrams
Table of responsibilities
View design rationale

State diagrams
Scenarios as message sequence
diagrams
View design rationale

Extended deployment
diagrams
View design rationale

Table of component realizations
Table of interface definitions
Configuration models
Links to asset repository
View design rationale

Constraints Conceptual structural view.
Accomplishment of architectural styles
and patterns with suitable design
patterns.

Conceptual behavior view.
Accomplishment of behavior with
selected design patterns.

Conceptual deployment and
development views.
Accomplishment of software
in physical elements.

Conceptual development view.
Controlling and maintaining software
qualities.

Functional
validation

Simulation with generated code Simulation with generated code,
input events and tracing points.

Simulation with different
allocations

-

Quality
validation

Adaptability, portability and reusability Modifiability, extensibility and
maintainability

Interoperability, capacity,
bandwidth

Integrability, maintainability

Language Not restricted. Not restricted. Not restricted. Not restricted.

Architectural Guidelines

Deliverable ID: D4 (Part A)

Page : 14 of 37

Version: 2.0
Date: 23 Oct 03

Status : Proposal
Confid. : Restricted

 Copyright WISE Consortium

6. CONCEPTUAL VIEWPOINTS

6.1 OVERVIEW

At the conceptual level of architecture design, it is important to have several degrees of freedom. Too strict
notations for architectural models at this stage could tie the architect's vision. The model should be more a
sketching and communication tool than a means of detailed specification. Even large modifications to the
basic concepts of the software architecture should be easy to make.

Conceptual Structural Viewpoint
By identifying structural elements and logical relationships among them, the Structural Viewpoint is provided
mainly by UML Structure Diagrams. In particular, the following information is crucial:

• System context as networked structure diagram
• Domain models of information shared between conceptual entities, based on Class Diagrams.
• Structure and relations of conceptual entities, based on simplified Class Diagram.

Conceptual Behavioral Viewpoint
By identifying the dynamics of a system and the interactions among services, the Behavioral Viewpoint is
based on Collaboration Diagrams. Special attention should be devoted to the description of collaboration
between functional entities in the main use cases of the system.

Conceptual Deployment Viewpoint

Deployment Viewpoint is based on the Deployment Diagram. Deployment Viewpoint identifies the
anticipated distribution needs in the system execution environment

Conceptual Development Viewpoint

The conceptual development viewpoint describes a topology model and a business model.

Business model illustrates the business relationships in the system, as well as the roles and the
relationships specifically covered by the system.

The topology diagram illustrates work allocation of services and service acquisition i.e. the
developed components and external services.

6.2 CONCEPTUAL STRUCTURAL VIEWPOINT

6.2.1 System context
The system context is perceived as the description of the networked structure (Figure 3). Services will be
allocated on top of this structure. This diagram is rather informal, and aims at showing an “idea” of the
environment where the system will be executed, and Hw/Sw constraints already known at the conceptual
level.

Architectural Guidelines

Deliverable ID: D4 (Part A)

Page : 15 of 37

Version: 2.0
Date: 23 Oct 03

Status : Proposal
Confid. : Restricted

 Copyright WISE Consortium

Game Client

Game Server Management
Server

GPRS
Network

Internet
Network

GGSN

Router Router

BTS

BTS

Game Client

GPRS

GPRS

Figure 3. Example of networked structure diagram

The networked structure diagram shows the execution environment of the system under development, in
terms of network resources, nodes and units present on nodes. Units can be acquired from external
resources (e.g. software technologies or products), or can represent knowledge about components to be
developed.

Architectural Guidelines

Deliverable ID: D4 (Part A)

Page : 16 of 37

Version: 2.0
Date: 23 Oct 03

Status : Proposal
Confid. : Restricted

 Copyright WISE Consortium

6.2.2 Domain Information models
The information models are described by using UML class diagrams. Only basic object oriented concepts
should be used and implementation related concepts left out. Inheritance and aggregation can be used but
methods and attributes are usually left out or kept at minimum detail (Figure 4).

Map

Layer

1

1

1.. n, *
1

11
acts in

*

1

carries

1

*

is engaged in

*

1

controls

Player Game*1

Character

Item

Ambient

*

1

contains

is based on

is set inis used to play in

1

1

Figure 4 Example of a domain information model

6.2.3 Functional structure
Functional structure is simplified class diagram. All the architectural entities are presented with a simple
classifier symbol (a rectangle). A stereotype is used to make a difference between the types of the entities
(Figure 5).

<< A pp lica tion> > G am e

<< D om ain>> S ervice M anagem en t Processe s

<< U ses> >

< <D om ain> > E nd U ser A pp lica tions

< <D om ain> > T echno logy P la tfo rm s

<< S erv ice> > Java
U I A P I

E nd U se r

< <U s es> >

< <S erv ice> >
JA V A2M E

< < U ses>>

< < A pp lica tion> >
G am e C lien t

< <A pp lica tion>>
G am e S erver<< U ses >>

<< S erv ice>>
D eploym e nt

< < Serv ice> >
P rovision ing

< <S erv ice> >
A uthentica tion

< < U ses> >

<< D om ain> >
A pp lica tion D om ain

S upport S erv ices

< <U ses> >

< <A pp lica tion>>
G am e

M anagem ent

< < C ontro ls> >

Figure 5: Functional structure of an example service.

Architect does not necessarily need to consider this type of an entity in the first drafts because the
stereotype can be added later. The composition is represented with containment and other architectural
relations with a stereotype of the relation. Aggregation and inheritance should not be used in order to keep
the structure clear.

Architectural Guidelines

Deliverable ID: D4 (Part A)

Page : 17 of 37

Version: 2.0
Date: 23 Oct 03

Status : Proposal
Confid. : Restricted

 Copyright WISE Consortium

The set of proposed stereotypes for conceptual entities are:
• Domain (a set of related services, i.e. a name domain)
• Application (a containment of services visible to end-user)
• Service (an end-user or middleware service)

The set of proposed stereotypes for architectural relations are:

• Uses
• Controls
• Data

The structure of a conceptual entity can be presented in a separate diagram whenever needed for clarity.
The structure should be presented with minimum number of diagrams so that the overall architecture is
easily visible.

The conceptual entities should be described in more detail using a separate textual description. It is
preferred to use lists or table format for textual information instead of free form text, to keep the structure of
the architectural description clear (Table 5).

Table 5 : Example of table format in architectural descriptions: Conceptual Element Responsibilities

Conceptual Element Responsibilities
Game Client Provides graphical user interface and handles the user visible subset of the

game.
Game Server Handles the game status and synchronizes the game state between different

users.
Game Management Provides common management of a game i.e. deploys and configures the

needed software components and provides the usage information for the
billing service.

Architectural Guidelines

Deliverable ID: D4 (Part A)

Page : 18 of 37

Version: 2.0
Date: 23 Oct 03

Status : Proposal
Confid. : Restricted

 Copyright WISE Consortium

6.3 CONCEPTUAL BEHAVIORAL VIEWPOINT

6.3.1 Collaboration diagram

The behavioral Viewpoint is based on Collaboration Diagrams. Its purpose is to identify the dynamics of a
system and the interactions among services. A special attention should be devoted to the description of
collaboration between functional entities involved in the main (groups of) use cases of the system. The
recommended number of main use cases is around five.

<<Service>>
Authentication

<<Service>>
Configuration

<<Service>>
Storage

<<Service>>
Provision

<<Service>>
Deployment

<<Application>>
Game Management

<<Domain>> Service Management

<<Service>>
Game List

<<Domain>>
Application Domain Support Services

<<Domain>>
End User Applications

1. User is
authenticated

4. Selected game
service

is deployed

4.1. Selected
game service
is configured

4.2. Data is
transferred

5. Provisioning is
done

2. List of
games is
requested

Figure 6: Conceptual collaboration in one use case of the example service.

Architectural Guidelines

Deliverable ID: D4 (Part A)

Page : 19 of 37

Version: 2.0
Date: 23 Oct 03

Status : Proposal
Confid. : Restricted

 Copyright WISE Consortium

6.4 CONCEPTUAL DEPLOYMENT VIEWPOINT

6.4.1 Deployment diagram
The conceptual deployment diagram shows the conceptual structural entities (e.g. application and services)
on top of the execution nodes defined for the system context. Deployment diagram uses UML deployment
diagram notation. The same service can be deployed to several different nodes (as is the Game
Management in Figure 7). The detailed internal deployment of such service can be shown in a separate
deployment diagram. This helps to analyze and describe the deployment needs for each service separately.
It also keeps deployment diagrams within a manageable size. The relations between entities need to be
shown only when they arise from the division of single conceptual entity into several (e.g. client and server)
parts for the deployment or are considered especially important.

Service ManagementGame Server

Mobile Terminal

<<Service>>
Authentication

<<Service>>
Configuration

<<Service>>
Storage

<<Service>>
Provision

<<Application>>
Game Client

<<Service>>
Game List

Mobile Terminal

<<Application>>
Game Client

HTTP

HTTP

<<Application>>
Game Server

<<Service>> Game
Management

<<Service>> Game
Management

<<Service>>
Game

Management

<<Service>>
Deployment

Figure 7: Example of notation for conceptual deployment

Architectural Guidelines

Deliverable ID: D4 (Part A)

Page : 20 of 37

Version: 2.0
Date: 23 Oct 03

Status : Proposal
Confid. : Restricted

 Copyright WISE Consortium

6.5 CONCEPTUAL DEVELOPMENT VIEWPOINT

6.5.1 Business Model

Modeling elements for the business model are summarized in the following. Elements shown in the figures
above and adhering to OMG UML standard notation are omitted.

Business role (or site) part of the Business Model but not within the system boundaries.

Business role (or site) part of the Business Model and within the system boundaries.

Business relationship part of the Business Model but not within the system boundaries.

Business relationship part of the Business Model and within the system boundaries
(mapped on one or more interactions).

Figure 8 shows an example how to use business model notation. In the figure, the example identifies two
roles played by parties (Retailer and Consumer), one business relationship implemented by the system
(Ret), and one business relationship (3Pty) used by the system to interact with external roles (or external
component), depicted by dashed dark lines between roles.

RetConsumer RetailerTCon TConConSConnectivityProvider 3Pty ConS
Bkr Bkr BkrBroker BkrThird-partyserviceprovider

Figure 8. Example of a Business Model.

Architectural Guidelines

Deliverable ID: D4 (Part A)

Page : 21 of 37

Version: 2.0
Date: 23 Oct 03

Status : Proposal
Confid. : Restricted

 Copyright WISE Consortium

6.5.2 Topology diagram

Topology diagram is not actually a complete notation but a uniform way to describe development
information on top of diagrams used in other viewpoints. Usually the viewpoint used as the basis is the
functional structure.

Work allocation is described with a notation element shown in Figure 9 (a shape of a man). Work
allocation element will be attached to a service or to a domain and it represents a person or a company
responsible for component acquisition/development. The name of a person or a company is shown below
the notation element.

Service A

: PersonA

Service B

: PersonB

Figure 9. Work allocation element attached to a service in a topology diagram.

Component acquisition is described with a color key shown in the topology diagram example in Figure 10.
The color key is inspired by traffic lights. New component (red) means a component or a service that is
developed from the scratch, whereas a modified component (yellow) denotes an already developed
component that is reused, but modified somehow. Commercial component (green) denotes a component
developed by a third party component supplier (e.g. COTS, MOTS or OCM). Other color keys can be
defined to describe more detailed acquisition information.

<<Application>> Game

<<Domain>> Service Management Processes

<<Uses>>

<<Domain>> End User Applications

<<Domain>> Technology Platforms

<<Service>> Java
UI API

<<Service>>
JAVA2ME

<<Uses>>

<<Application>>
Game Client

<<Application>>
Game Server<<Uses>>

<<Service>>
Deployment

<<Service>>
Provisioning

<<Service>>
Authentication

<<Domain>>
Application Domain
Support Services

<<Uses>>

<<Application>>
Game

Management

<<Controls>>

new component

modified component

commercial component

: Sodalia

: Motorola : Sonera

Figure 10: Example of topology diagram

Architectural Guidelines

Deliverable ID: D4 (Part A)

Page : 22 of 37

Version: 2.0
Date: 23 Oct 03

Status : Proposal
Confid. : Restricted

 Copyright WISE Consortium

7. CONCRETE VIEWPOINTS

7.1 OVERVIEW

Concrete Structural Viewpoint
The Concrete Structural Viewpoint is provided mainly by Class Diagrams and Component Diagrams. Their
purpose is to identify concrete structural elements and relationships among them. In particular, the following
information is crucial:

• Complex information managed by the system, based on the Class Diagram.
• Basic structure of computational entities, based on the Class Diagram.
• Complex structure of computational entities, based on the Component Diagram.

Of particular relevance is the representation of complex data structures in several Class Diagrams. Indeed,
a computational-oriented Class Diagram identifies which classes manage which data structures, whereas
details about the latter are focused in a dedicated information-oriented Class Diagram.
Diagrams providing the Structural Viewpoint belong to the class (or type-level) space.

Concrete Behavioral Viewpoint
The Behavioral Viewpoint is based on Sequence Diagrams that represent the dynamics of a system and the
interactions among classes and/or among components. Special attention should be devoted to the
specification of cross-components and intra-components interactions. Cross-components interactions occur
among different components and realize overall system functionality. Intra-components interactions occur
internally to a selected component, and realize encapsulated implementation of a service offered to the
external world.
The diagrams that describe the Behavioral Viewpoint belong to both the class and the instance spaces:
class-level behavior is modeled by using Sequence Diagrams, and whenever required, instance-level
Sequence Diagrams can show relevant example execution scenarios.

Concrete Deployment Viewpoint
The Deployment Viewpoint is based on the Deployment Diagram, which identify the actual execution
environment in which a system will be operated. The execution environment can be depicted as:

1. The description of the networked structure on the top of which the system has to be installed.
Details about services and technologies acquired from third parties for system execution are
delegated to the Development Viewpoint.

2. The business structure (taken from conceptual development viewpoint) to which the system has to
adhere, as well as the adopted business strategies.

Concrete Development Viewpoint
The Concrete Development Viewpoint shows the interfaces between the concrete components. In addition,
it describes the development-time software structure and links to the assets repository with UML structural
diagrams (packages and associations). Finally, the development viewpoint describes the technology layers
with an informal notation.

7.2 CONCRETE STRUCTURAL VIEWPOINT
Static Structure diagrams show the static structure of a system: modules and their relationships. Among
diagrams of this type we consider Class diagrams and Component diagrams, even if other diagrams (less
important in the context of this work) belong to the same type, like for instance object diagrams.
We concentrate on Class diagrams and Component diagrams, as they present the same architectural
viewpoint (i.e. the structural one) but on different granularities: Class diagrams define low granularity
elements (the classes); Component diagrams operate at a higher level of granularity, focusing on

Architectural Guidelines

Deliverable ID: D4 (Part A)

Page : 23 of 37

Version: 2.0
Date: 23 Oct 03

Status : Proposal
Confid. : Restricted

 Copyright WISE Consortium

aggregations of classes and distributed interfaces (the components). As it will become clear throughout the
next two Sections, these two diagrams are central to understand a distributed system, to successfully drive
developers through software engineering activities, and to provide the users with detailed system
documentation.

7.2.1 Essential information-oriented aspects
The information aspects can be modeled using to main elements:

• Information classes: classes modeling atomic and structured data
• Logical associations: relationships among information structures

Information is modeled as standard OMG UML Class Diagrams. They are kept separated from
computational-oriented aspects.

7.2.2 Essential computational-oriented aspects
Essential elements of the computational model are:

• System components: atomic modules aggregating a collection of computational classes. Component
representation should identify both the internal and the external structure of a component, in a
graphical compact notation.

• Exported interfaces: interfaces offered to the external world, to make component services available
to potential clients.

• Internal interfaces: operations and interfaces part of the internal structure of the component. Special
attention should be dedicated in the identification (or differentiation) of language specific
operations.

• Component relationships: associations existing between different components, and inside a
selected component, between its classes.

Summary of notation
Modeling elements for the computational model of the Structural Viewpoint are summarized in the following.
Elements shown in the preceding figures or adhering to the standard OMG UML notation are omitted.

Component external to the system under development (e.g. database, third party
service, network access, etc.).

Computational class internal to a component, and coordinating the life cycle of the
component (e.g. crating, deleting and managing its internal objects). It offers distributed
(possibly language-independent) interfaces. It is static, in that it exists in a unique
instance for the whole life cycle of the component.

Computational class internal to a component, and providing local (language-
dependent) interfaces. It is static, in that the number of its instances is fixed for the
whole life cycle of the component.

Computational class internal to a component, and providing local (language-
dependent) interfaces. It is dynamic, in that the number of instances varies during the
life cycle of the component.

Figure 11, part (a) shows the external structure of a system component, i.e. exported interfaces, component
external associations and entities external to the system. This diagram is mainly based on the UML
Component Diagram, extended with external components depicted with black box interfaces.

Architectural Guidelines

Deliverable ID: D4 (Part A)

Page : 24 of 37

Version: 2.0
Date: 23 Oct 03

Status : Proposal
Confid. : Restricted

 Copyright WISE Consortium

Part (b) shows the internal structure of a system component at a lower level of detail, i.e. aggregated
computational classes, internal interfaces, internal component associations, and how external
functionality/associations is realized internally.

Whenever aggregated computational classes have a complex structure, they can be further detailed in
additional UML Class Diagrams.

My Component

ii_
Communication

ii_Management

ii_ Restricted
Usage

DB interaction

(b)

External
DB

My Component

db_proxy

ii_RestrictedUsage

ii_Communication

: distributed interface

: local interface

managed_

object

ii_Management

(a)

External
DB

Component

manager

Figure 11. (a) Inter-Component Diagram, (b) Intra-Component Diagram.

7.3 CONCRETE BEHAVIORAL VIEWPOINT

Interaction diagrams in UML (i.e. Sequence and Collaboration diagrams) show the runtime behavior of a
system. This means to model how components exchange messages and invoke one another interfaces and
operations to achieve the overall system functionality.

Summary of notation
Modeling elements for the Behavioral Viewpoint are summarized in the following. Elements adhering to
OMG UML standard notation are omitted.

Black box component (for which internal details are omitted).

Component detailed in its constituent parts (interfaces and internal objects) to
explain how an interaction scenario is served internally by the component itself.

Invocations arriving from (or directed to) “nowhere” provide horizontal
modularization of scenarios. They can be decorated with the name of the scenario
(X) and its subpart (Y) for documentation.

When a system is complex, behavior can be organized on two abstraction levels, namely inter-component
behavior (depicting overall interactions of a system as a whole) and intra-component behavior (focusing on
single components and showing how overall functionality is served internally by component members).

Architectural Guidelines

Deliverable ID: D4 (Part A)

Page : 25 of 37

Version: 2.0
Date: 23 Oct 03

Status : Proposal
Confid. : Restricted

 Copyright WISE Consortium

0. initialise()

Client Component My Component

manager managed
object

1. create ()

[refs]

db_proxy

[refs]

2: store info ()

inter-Component

perspective

external invocation

intra-Component

perspective

objects offering

internal interfaces

instantiation

return with values

(or object references)

asynchronous

invocation

Figure 12. Notation for Intra- and Inter-Component interactions

To add sequencing information, we basically rely on sequence diagrams, which can be modeled at both
class and instance levels.
Accordingly, Inter-Component Sequence Diagrams depict scenarios of interactions between different
components, to achieve overall functionality. To this aim, components (and possible external elements) are
depicted as black box elements, without entering the details of how interactions are supported internally by
each component.
Similarly, Intra-Component Sequence Diagrams depict how scenarios are realized inside a component.
Therefore, in this diagram components are detailed in their parts, i.e. constituent objects (if necessary) and
exported interfaces (if multiple).

Figure 12 summarizes the main aspects in modeling interactions in Intra-Component Sequence Diagrams.
We can observe that the component, on which the diagram is focused, is detailed in its interfaces, whereas
the external (Client) component being the source of interaction is depicted as a black box element.

Guidelines for the use of Sequence Diagrams are:
• Diagrams are needed only for those interactions, which are particularly crucial, critical or complicated.

• Diagrams should represent composite objects and multiple interfaces.

• Diagrams can provide vertical modularization, i.e. intra-component and inter-component perspectives.

• Diagrams can provide horizontal modularization, i.e. represent fragmented scenarios if fragments show
interactions recurring in multiple scenarios, or if a scenario is particularly complicated.

• Diagrams should represent adherence to standards or recurring interaction patterns, possibly modeled
at class level.

• Diagrams can focus on input to and output from the system, to drive interface development. The
representation of return parameters on return interaction arrows is crucial.

Architectural Guidelines

Deliverable ID: D4 (Part A)

Page : 26 of 37

Version: 2.0
Date: 23 Oct 03

Status : Proposal
Confid. : Restricted

 Copyright WISE Consortium

7.4 CONCRETE DEPLOYMENT VIEWPOINT

7.4.1 Deployment diagram
This diagram shows which interactions implement the identified business relationships, which connections
are needed, possible security or contractual requirements, etc.

For those systems implementing service architectures, interface-level standards can be used to define
business relationships in terms of technical interactions, so that by mapping a standard on the chosen
business model, system compliance is automatically achieved.

Figure 13 shows an example of a networked structure of on top of which system components are to be
deployed. This diagram also details the number and types of nodes for each business role, and how/which
cross-component interactions realize the business relationships modeled in the conceptual development
view.

Customer A UserProfileDB
Customer B Retailermanagement site

Retailer server site
RetailerCustomerService

ii_communication ii_managementii_restrictedAccessii_userCustomisationii_fullAccess servicemanagementRet 3PtyThird-party Service ProviderGUI end-userservice

Figure 13. Example of Deployment of Components.

7.5 CONCRETE DEVELOPMENT VIEWPOINT

7.5.1 Interfaces

The interfaces between developed concrete components are presented in the format of a table. Table 6 is
an example of such a table. Interface hierarchy can have several levels i.e. interfaces can be bundled into
larger interface entities. Interfaces between component developed by single stakeholder can also be shown
along with concrete structural viewpoint. More detailed explanation of the interface description model is in
the chapter 7.

Architectural Guidelines

Deliverable ID: D4 (Part A)

Page : 27 of 37

Version: 2.0
Date: 23 Oct 03

Status : Proposal
Confid. : Restricted

 Copyright WISE Consortium

Table 6 : Example of abstract interface definition

Interface Responsibility Operation

authenticate
authorize
userProfile
accountRequest
subscribe

srvMgm_ITF:
asynchronous

 EJB (RMI/IIOP)

Allows the access to Service Management
Services, such as authentication and
authorisation of a user, user profile
management and accounting.

unsubscribe
srvMgm2_ITF:
asynchronous

EJB

Allows the message handling from the
SelfSubscription Service

requestNotification

The Implementation level “Interface definitions for a specific technology” are described in a separate
diagram.

7.5.2 Development structure

The development-time software structure and links to assets repository (if present) can be shown with UML
package diagrams.

7.5.3 Technology layers

The technology layers can be described with informal notation.

Architectural Guidelines

Deliverable ID: D4 (Part A)

Page : 28 of 37

Version: 2.0
Date: 23 Oct 03

Status : Proposal
Confid. : Restricted

 Copyright WISE Consortium

8. INTERFACE DESCRIPTION MODEL In order for a service to interact with other services, there must be technical conventions for standardising interactions. This standardisation includes messaging formats, interaction definitions, properties of the interactions (security, performance) etc. Concept of interfaces is often used to model interactions. Interoperability and composability requirements of the wireless services lead to the fact that the standardised way to describe service interfaces is required. Currently, constraints in description models and in their implementations are restricting interoperability between service providers. In the following, a suggestion for the standardised interface description is proposed. Interface description model has two levels. The first level illustrates the interfaces from the architectural point of view, describing the responsibilities of the interface. The second level is a detailed description of the transformation of the interfaces, i.e. how the interfaces are mapped to the implementation. The idea behind the levels has been in the description of the whole service. The purpose of the service description is to describe the whole service using XML, so that the tools can automatically understand the description. WSDL (Web Services Description Language) was firstly examined to be used in the service description. However, WSDL was not adequate for this purpose, because it describes services only as endpoints and messages. The architectural level interface description is an important part of the service description. The interface description should obey the same principles as the service description, so that it can be included as a part of service description when needed. To enforce this, eXtensible Markup Language (XML) implementation of the proposed interface description is also presented. The transformation level description reveals the alternative implementations of the interfaces. The traditional table format is not adequate for the interface description for several reasons. Firstly, the table format is not flexible. There may be different kind of information available for different interfaces, when the description of these is difficult by using the same table. In addition, the description of different hierarchy level is difficult by using a table format. Secondly, the table format does not allow the effective information search when retrieving information from the service or the interfaces. Thirdly, the table format does not enable the different information presentation, i.e. different views on the information. Therefore, more powerful description technology for interface description is required. The chosen technology, eXtensible Markup Language (XML), is the World Wide Web Consortium's (W3C) recommendation for a meta-markup language [26]. XML provides a mechanism for describing the document content, structure and meaning. It also enables platform-independent data exchange between applications [27]. XML was chosen because of its extensibility and application independency. XML is a non-proprietary format and is not encumbered by any sort of intellectual property restriction. Any tool that understands XML format can be used to handle XML documents.
8.1 THE ARCHITECTURAL LEVEL INTERFACE DESCRIPTION The architectural level interface description is a specification for the architectural level of the service. Graphically, the interfaces can be described using the external component diagram

Architectural Guidelines

Deliverable ID: D4 (Part A)

Page : 29 of 37

Version: 2.0
Date: 23 Oct 03

Status : Proposal
Confid. : Restricted

 Copyright WISE Consortium

that illustrates both required and provided interfaces of the service. However, the graphical presentation is not informative enough, so more detailed description is required. The interface description of the architectural level consists of the following elements: interface name, bundle, communication type, list of implementations, responsibility and operation. Interface name should be well defined and describe the use or the purpose of the interface. An interface should be able to be composed from different interfaces. Therefore, an interface may be a part of an interface bundle that is a collection of interfaces. The interface composition can have several hierarchical levels, but these are restricted here because of the description format. The name of the possible bundle should be defined within the interface name. Interface communication describes the type of communication that occurs through the interface. For example, in synchronous communication a receiving object must be ready to communicate with the sending object at all times, whereas in asynchronous communication a receiving object can retrieve messages at its convenience. Implementation in this context means the technology that the interface supports. There may be several implementations for the interface, so the used technologies are listed here. Responsibility describes the interface’s responsibility, i.e. what are the assignments that the interface is responsible of. Operation is a list of operations that interface enables. The operations are introduced here only by name. The more detailed description is given in an interface transformation description. Table 7 displays the introduced elements of the interface description. The interface field in Table 7 can also include a reference element that is an optional element that will be used when necessary. The reference element is used to make a reference to architectural design document, where the information about the interface or the interface bundle is available. The reference should also reveal the architectural view that is used to define the target of the reference.

Table 7. Architectural level interface description. Interface Responsibility Operation Name of the interface (the name of the possible interface bundle): communication type List of implementation technologies (i.e. variants). Reference (reference to the architecture design document)
Description of the interface’s responsibility Operation name

8.2 THE TRANSFORMATION LEVEL INTERFACE DESCRIPTION The transformation level interface description describes how the interfaces are transformed from the architectural design Level to the implementation Level. Each interface is described separately. In addition, there may be several variants for each interface. In this context, a variant is an alternative implementation of the interface. Each variant should be described using the following table (Table 8).

Architectural Guidelines

Deliverable ID: D4 (Part A)

Page : 30 of 37

Version: 2.0
Date: 23 Oct 03

Status : Proposal
Confid. : Restricted

 Copyright WISE Consortium

The interface description at the transformation level consists of the following elements: implementation, method, responsibility, parameters, return and exceptions. The name of the interface is the caption of the table; also the implementation technology is mentioned in the caption to identify the variant. Implementation in this context means the technology that the interface supports. Method element must always correspond to the operation from the architectural level description. In this context, a method is an implementation of an operation. The primitive for the method is one of the message transmission primitives defined in Web Services Description Language (WSDL) [25]: one-way, request-response, solicit-response or notification. WSDL describes network services as a set of endpoints operating on messages. One-way transmission means that the endpoint receives a message. In request-response transmission the endpoint receives a message, and sends a correlated message, whereas in solicit-response transmission the endpoint sends a message, and receives a correlated message. In notification transmission the endpoint sends a message. Responsibility element describes the purpose and responsibilities of the method. Parameter responds the "part name" in WSDL. Messages consist of one or more logical parts. Each part is associated with a type from some type system, such as XSD, using a message-typing attribute. Thus, a parameter type is a data type definition that is relevant for the exchanged message. The return element imposes the return-value of the method. Exceptions element describes the possible exceptions in communication. Table 8 displays the introduced elements in the table format.
Table 8. Transformation level interface description. Interface name: technology Method Responsibility Parameter Return Exceptions Method name: transmission primitive Description of method’s responsibility Parameter name: type The return-value of the method Description of exceptions in communication
8.3 THE IMPLEMENTATION OF THE INTERFACE DESCRIPTION In the following, the interface description is transformed to the XML format. An XML document consists of semantic tags (elements) that break a document into parts and identify the different parts of the document. The extensibility and self-describing nature of XML means that users can define their own set of markup tags. These tags must be organized according to certain general principles of a Document Type Description (DTD), which specifies the rules for the structure of a document. XML does not include any formatting instructions, but the formatting can be added into documents with style sheets [24]. XML allows an easy data retrieval from the whole service description. Separate XSL stylesheets allow the creation of different views from the XML data. XSL (Extensible Style Language) is a style language for presenting structured content - i.e. styling, laying out and paginating the source content onto some presentation medium, such as a web browser [24]. With the help of a stylesheet, the interface description can be easily viewed in desired format. In the same way, the unnecessary information can be filtered away when needed. Figure 14 shows the developed XML based document template of the interface description. The document template is the base form for the interface description, including all the required elements and attributes. The elements and attributes are highlighted with red color. The instructions for the use of the XML template are placed in the template between square brackets.

Architectural Guidelines

Deliverable ID: D4 (Part A)

Page : 31 of 37

Version: 2.0
Date: 23 Oct 03

Status : Proposal
Confid. : Restricted

 Copyright WISE Consortium

 The XML based interface description consists of interface model and the description of the both provided and required interfaces. The interface model is usually a picture of external component (or service) interfaces. The model element includes the name attribute, and has a child element called image. The image element also has the name attribute for the name of the image and src attribute for the source of the image. The image element may also have a child element called caption for inserting the caption for the image. Interfaces, both provided and required, are described with interface element that has the name and bundle attributes and child elements, such as responsibility, communication, reference, operations and variant. Reference element has a child element called target that has a href attribute for the location of the referenced document. The operations element can have child elements called operation one to many. Interface element may have one to many variant elements, depending on the amount of the different interface implementations. The variant element has an attribute called technology and a child element called methods. The methods element can have child elements called method one to many. The method element has a name attribute and the child elements such as type, responsibility, parameters, return and exceptions. The parameters element can have one to many parameter-child elements. . The parameter element has the name and type attributes.

Architectural Guidelines

Deliverable ID: D4 (Part A)

Page : 32 of 37

Version: 2.0
Date: 23 Oct 03

Status : Proposal
Confid. : Restricted

 Copyright WISE Consortium

Figure 14. XML template of the interface description.

8.4 AN EXAMPLE OF THE USE OF THE MODEL In the following, the interface description model is demonstrated using a sample service. The sample service, Service Management Component, is one of the WISA basic services (see WISA reference architecture). The service addresses the following functional area: authentication and authorization of users, user profile management, self-subscription management and accounting and mediation/rating. The Service Management Services are accessible through an interface that is a facade between service management server and application servers. Figure 15 shows the external interfaces of the Service Management Component. The SrvMgm_ITF interface groups together the methods required to use the services. Service Management Component requires a SSS_ITF interface to receive notifications concerning the subscription

Architectural Guidelines

Deliverable ID: D4 (Part A)

Page : 33 of 37

Version: 2.0
Date: 23 Oct 03

Status : Proposal
Confid. : Restricted

 Copyright WISE Consortium

made by a user for a service. Administration interface is used to remotely administer the component. This interface is unexposed to the user of the service and therefore it is not concerned here.

Figure 15. External interfaces of the Service Management Component. In the following tables (Table 9 and Table 10), one of the interfaces of the sample service is described using the table format:
Table 9. An example of the architectural level interface description. Interface Responsibility Operation authenticate authorize userProfile accountRequest subscribe srvMgm_ITF: asynchronous EJB (RMI/IIOP) Allows the access to Service Management Services, such as authentication and authorisation of a user, user profile management and accounting. unsubscribe
Table 10. An example of the transformation level interface description. srvMgm_ITF: EJB (RMI/IIOP) Method Responsibility Parameters Return Exceptions authenticate: request-response Wraps a call to the Authentication Service. The method returns true if the credentials provided are correct. user: String password: String Boolean authentication failed authorize: request-response Wraps a call to the Authorization Service. user: String service: String Boolean authorization failed userProfile: request-response Wraps a call to the User Profile Service. The returned Map is a key-value association that describes the profile of a user. user: String Map getting userProfile failed accountRequest: request-response Wraps a call to the Accounting Service. id: String timestamp: Date values: Object [] AccountingReply can't execute accountingRequest with

Architectural Guidelines

Deliverable ID: D4 (Part A)

Page : 34 of 37

Version: 2.0
Date: 23 Oct 03

Status : Proposal
Confid. : Restricted

 Copyright WISE Consortium

sessionId subscribe: request-response Reads the request type. subscriptionId: String user: String reqType: String service: String void Error at message arriving unsubscribe: request-response Reads the request type. subscriptionId: String user: String reqType: String service: String void Error at message arriving In the following, the XML template is applied to describe an interface of the sample service (Figure 16).

Figure 16. The XML description of an interface of the sample service.

Architectural Guidelines

Deliverable ID: D4 (Part A)

Page : 35 of 37

Version: 2.0
Date: 23 Oct 03

Status : Proposal
Confid. : Restricted

 Copyright WISE Consortium

 The resultant document can be viewed with a web browser using a style sheet that formats the XML data e.g. to the table format.

Architectural Guidelines

Deliverable ID: D4 (Part A)

Page : 36 of 37

Version: 2.0
Date: 23 Oct 03

Status : Proposal
Confid. : Restricted

 Copyright WISE Consortium

9. REFERENCES
1. Bachmann, F. and Bass, L. Managing Variability in Software Architectures. Proceedings of SSR’01,

ACM. 2001. Pp. 126 - 132.

2. Bass, L., Clement, P. and Kazman, R. Software Architecture in Practice. Addison-Wesley. 1998.

3. Bosch, J. Design & Use of Software Architectures. Addison-Wesley. 2000.

4. Buschmann, F., Meunier, R. and Rohnert, H. Pattern-oriented software architecture, a system of patterns.
John Wiley & Sons. 1996.

5. Faulk, S., Harmon, R. and Raffo, D. Value-Based Software Engineering (VBSE), A Value-Driven
Approach to Product-Line Engineering. Proceeding of SPLC1. Kluwer Academic Publishers. 2000.

6. Gamma, E. Design patterns: elements of reusable object-oriented software. Addison-Wesley. 1994.

7. IEEE Computer Society, IEEE Recommended Practice for Architectural Descriptions of Software-
Intensive Systems. IEEE Std-1471-2000.

8. Johnson, R., Foote, B.: Designing Reusable Classes, Journal of Object -Oriented Programming, 1 (2), 22-
5.

9. Kang, K. C., Kim, S., Lee, J. and Kim, K. FORM: A Feature-Oriented Reuse Method with Domain-
Specific Reference Architectures. Annals of Software Engineering, 5, 1998. Pp. 143 - 168.

10. Kang, K. C., Sholom G. C., Hess J. A, Novawk W., and E. Peterson A. S., K. Feature-Oriented Domain
Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-21, ESD-90-TR-222, 1990.

11. Niemelä, E. A component framework of a distributed control systems family. VTT Publications 402,
Espoo, Technical Research Center of Finland. 1999.

12. Kronlöf, K. Method integration: concepts and case studies. John Wiley & Sons. 1993.

13. Perry, D. and Wolf, A. Foundation for the Study of Software Architecture. SIGSOFT Software
Engineering notes, vol. 17, No. 4, 1992, Pp. 40 - 52.

14. Shaw, M. and Garlan, D. Software Architecture. Perspectives on an Emerging Discipline. Prentice Hall.
1996

15. Sodhi, J., Sodhi, P., Software Reuse, Domain Analysis and Design Process. McGraw-Hill, 1999.

16. Szyperski, C. Component Software. Beyond Object-Oriented Programming. New York: Addison Wesley
Longman Ltd. 1997.

17. TINA Consortium Service Architecture specification. http://www.tinac.org

18. Emmerich, W., Engineering distributed objects. John Wiley & Sons, Ltd., 2000.

19. Buschmann, F., Maunier, R., Rohnert, H., Sommerlad, P., Stal M., A System of Patterns – Pattern-
oriented Software Architecture. Wiley 1996.

Architectural Guidelines

Deliverable ID: D4 (Part A)

Page : 37 of 37

Version: 2.0
Date: 23 Oct 03

Status : Proposal
Confid. : Restricted

 Copyright WISE Consortium

20. Matinlassi, M., Niemelä, E., Dobrica, L. Quality-driven architecture design and quality analysis. A
revolutionary initiation approach to a product line architecture. 129 p. + 10 p.

21. Purhonen, A., Niemelä, E., Matinlassi, M. Views of DSP software and service architecture. Submitted to
Journal of Systems and Software, 31 p.

22. Jacobson, I., Griss, M., Jonsson, P., “Software Reuse. Architecture, Process and Organization for
Business Success”, Addison Wesley, 1997.

23. OMG (Object Management Group), “OMG Unified Modeling Language Specification”, Version 1.4,
Sep. 2001. On-line at http://www.omg.org/uml.

24. Harold, E. 1999. XML Bible. Foster City, USA: IDG Books WorldWide, Inc. 1015 p. ISBN: 0-7645-
3236-7.

25. World Wide Web Consortium 2001- Web Services Description Language (WSDL) 1.1. Available:
http://www.w3.org/TR/wsdl.

26. World Wide Web Consortium 2001. Extensible Markup Language (XML). Available:
http://www.w3.org/XML/.

27. Walsh, N. 1998. A Technical Introduction to XML. InterCHANGE, Vol. 4, Issue 2. Pp. 17-26.

