

Architecture Handbook
Deliverable ID: D4 (Part D)

Page : 1 of 77

Version: 1.06
Date: 20 May 04

Status :Proposal
Confid. : Restricted

 Copyright WISE Consortium

Title:
Architecture Handbook

Version: 1.06
Date : 21 Apr 04
Pages :

Author(s):
J. Kalaoja; E. Niemelä; A. Tikkala; P. Kallio;
T. Ihme; M. Torchiano

To:
WISE CONSORTIUM

The WISE Consortium consists of:

Investnet, Motorola Technology Center Italy, Sodalia s.p.A, Sonera,
Solid EMEA North, Fraunhofer IESE, Politecnico di Torino, VTT
Electronics

Printed on:
20-May-04 9:51

Status: Confidentiality:

[
[
[
[

x

]
]
]
]

 Draft
 To be reviewed
 Proposal
 Final / Released

[
[
[

X

]
]
]

 Public
 Restricted
 Confidential

- Intended for public use
- Intended for WISE consortium only
- Intended for individual partner only

Deliverable ID: D4 (Part D)

Title:

Architecture Handbook

Summary / Contents:
This document is a part of the deliverable D4 produced in the task 2.1 of the Wise project. Deliverable D4
includes four parts: Part A: Architectural guidelines, Part B: the WISA (Wireless Internet Service
Architecture) architectural knowledge base and its reference architecture (WISA/RA), Part C: Analysis of
the pilot architectures, and Part D: Handbook of reusable architectural assets.

This document contains a set of tools that can be used to build wireless services. This document should
be read after the knowledge contained in D4B has been assimilated.

The document provides three types of reusable architectural assets: 1) typical architectures that can be
used as starting points to develop wireless service architectures; 2) architectural styles and patterns that
can be used to develop services, and 3) existing services that can be re-used in new services.

WIRELESS INTERNET SOFTWARE ENGINEERING IST-2000-30028

Architecture Handbook

Deliverable ID: D4 (Part D)

Page : 2 of 77

Version: 1.06
Date: 20 May 04

Status :Proposal
Confid. : Restricted

 Copyright WISE Consortium

TABLE OF CONTENTS

1. INTRODUCTION ... 5
1.1 Typical Problems in wireless services.. 5
1.2 Structure and content ... 6

2. ABBREVIATIONS ... 7

3. Typical Architectures .. 9
3.1 TA1: Adaptation of web-based content provisioning ... 10

3.1.1 Conceptual Architecture .. 11
3.2 TA2: Rich interaction .. 14

3.2.1 Conceptual Architecture .. 15
3.2.2 Concrete Architecture .. 20

4. Pattern Catalog .. 22
4.1 Description of selected architectural styles and patterns .. 22

4.1.1 N-Tier Client-Server (C/S) style ... 23
4.1.2 Peer-to-Peer (P2P) .. 26
4.1.3 Blackboard ... 31
4.1.4 Pipes and Filters .. 33
4.1.5 Tiered style... 34
4.1.6 Broker... 35
4.1.7 Layered style.. 36
4.1.8 Model-view-controller... 38
4.1.9 Presentation-abstraction-control (PAC) .. 39

4.2 Wireless-specific patterns .. 41
4.2.1 Reduced Mark-up Language... 41
4.2.2 Connection-less protocols ... 42
4.2.3 Multiple presentations .. 43

5. WISA BASIC SERVICES .. 45
5.1 Application DOmain Support Services... 45

5.1.1 3D Game Engine (X-Forge Technology) ... 45
5.1.2 Game GUI library ... 47
5.1.3 Game Engine... 49
5.1.4 Location based services (Polos platform) ... 49
5.1.5 Geographic services (GIS) .. 49

5.2 Generic Platform services .. 49
5.2.1 Negotiation protocol... 49
5.2.2 Heterogeneous User Interface Service... 50
5.2.3 Wise Transport service.. 53
5.2.4 Multimedia streaming service (MMS) .. 55
5.2.5 Instant Messaging & Presence Service .. 58
5.2.6 Configuration Service .. 61
5.2.7 Data Management Component... 65

5.3 Technology Platform services .. 67
5.3.1 WAP... 67
5.3.2 J2SE... 67
5.3.3 J2EE... 67

Architecture Handbook

Deliverable ID: D4 (Part D)

Page : 3 of 77

Version: 1.06
Date: 20 May 04

Status :Proposal
Confid. : Restricted

 Copyright WISE Consortium

5.3.4 J2ME .. 67
5.4 Service management services... 68

5.4.1 Service Management Component (SMC)... 68

6. REFERENCES .. 74

Architecture Handbook

Deliverable ID: D4 (Part D)

Page : 4 of 77

Version: 1.06
Date: 20 May 04

Status :Proposal
Confid. : Restricted

 Copyright WISE Consortium

CHANGE LOG

Vers. Date Author Description Comments
1.00 20 June 03 M.Torchiano Created from parts of previous D4B (made by J.

Kalaoja, E. Niemelä, A.Tikkala, P. Kallio, T.Ihme
and M. Torchiano)

1.01 17 July 03 T.Ihme Introduced chapter on architectural styles and
patterns

1.02 29 August 03 T.Ihme Expanded chapter on patterns
1.03 22 Sep. 03 M.Torchiano Added typical architectures and wireless patterns
1.04 5 Oct 03 M.Torchiano Refined typical architectures and patterns
1.05 6 Oct 03 M.Torchiano Integrated several contributions

APPLICABLE DOCUMENT LIST
Ref. Title, author, source, date, status Identification
1 D4A - Achitectural guidelines v. 1.04
2 D4B - WISA reference architecture v. 1.04
3 D4C - Analysis of pilot architectures v. 1.04

Architecture Handbook

Deliverable ID: D4 (Part D)

Page : 5 of 77

Version: 1.06
Date: 20 May 04

Status :Proposal
Confid. : Restricted

 Copyright WISE Consortium

1. INTRODUCTION

This document presents WISE architectural handbook for wireless Internet services. The handbook is
intended to be a sort of vademecum of the wireless service developers, providing him/her with a set of
solutions to recurrent issues.

The main stakeholder of this document is the "new" and possibly inexperienced wireless service developer,
who has some knowledge about software development (which we do assume is deep) and a limited if any
knowledge about the wireless services domain.

This document is a part of the D4 deliverable that as a whole provides a set of assets to be used in wireless
service engineering. Part A, Architectural guidelines (see ref. 1), defines 1) the terminology, 2) viewpoints
and 3) notation appropriate in the development of wireless services. These guidelines have also been
applied in the documentation of WISA/RA and the basic services in this document but only from the point of
view of the users, not the developers, of the reference architecture and its services. Part B contains the
reference architecture and its constituents; the purpose of D4B is to provide the basic understanding of the
issues of architecting a wireless service and provide the basic knowledge and terminology to understand the
new domain. Part C, Analysis of pilot architectures, gives valuable feedback of the use of the architectural
guidelines and WISA/RA. The purpose of the Part C is also to encourage the architects to analyze
architecture before its use because it leads to better quality of services and decrease development cost. In
summary, these three parts of D4 provide a set of reusable assets for wireless service development and all
of them are encouraged to be used in order to maximize benefits from the use of WISA knowledge base.

The content of this document is a set of reusable architectural assets:
• Typical examples of wireless services architectures that can be used as starting point to develop custom

solutions.
• Architectural styles and patterns to be reused.
• Descriptions of services. The purpose of the descriptions is to assist service developers to use services

as building blocks in the development of wireless services. Therefore, the emphasis was put on the
quality, features and interfaces a service provides to its users, not its internal functional properties.

1.1 TYPICAL PROBLEMS IN WIRELESS SERVICES

The novice wireless internet service developer faces many problem when engineering and designing an
application destined to provide a service in the wireless domain. One of the objectives of this architectural
handbook is to provide an overview of the most common issues encountered in the wireless service domain.
When we will present the reusable assets (typical architectures, patterns, styles and existing services) we
will show how they address the main wireless issues.
We conducted an investigation on the wireless specific issues and problems, we found that the main
features that characterize wireless services are:

• Heterogeneous clients
• Limited device capabilities

o Screen size
o Memory size
o Performance
o Power supply

• Limited bandwidth
• Discontinuous network connection

o Intermittent availability

Architecture Handbook

Deliverable ID: D4 (Part D)

Page : 6 of 77

Version: 1.06
Date: 20 May 04

Status :Proposal
Confid. : Restricted

 Copyright WISE Consortium

• Mobility
o Transition among “cells”

• Location awareness
• Gap between demonstrator & deployed service (surprise project)
• Several parties participating providing the services or its components
• dominant position of telecom operators when providing services
• different network technologies in different countries

It is possible to deal with the above issues at several levels in the development of wireless services. Some
of them can be addressed by means of low-level solutions and patterns, while other can be dealt with by
means of architectural solutions.

1.2 STRUCTURE AND CONTENT
The handbook is divided into three parts that describe the reusable assets corresponding to the three types
of reusable assets. The next chapters present a collection of reusable assets:

• Typical architectures are described in Chapter 3
• The architectural styles and patterns are presented in Chapter 4
• The catalog of available services is in Chapter 5

Architecture Handbook

Deliverable ID: D4 (Part D)

Page : 7 of 77

Version: 1.06
Date: 20 May 04

Status :Proposal
Confid. : Restricted

 Copyright WISE Consortium

2. ABBREVIATIONS
API Application Programming Interface
ATM Asynchronous Transfer Mode
BSS Business Support Systems
BTS Base Transceiver Station
C/S Client Server
CORBA Common Object Request Broker Architecture
COTS Commercial Off-The-Shelf
CRM Customer Relationship Management
DNS Domain Name Server
EMS Enterprise Messaging Server
FTP File Transfer Protocol
GGSN Gateway GPRS Support Node
GIS Geographic Information Systems
GPS Global Positioning System
GUI Graphic User Interface
HTML HyperText Markup Language
HTTP HyperText Transfer Protocol
HUS Heterogeneous User Interface Service
DSOM Distributed System Object Model
IM/P Instant Messaging and Presence service
ITF Interface
J2EE Java 2 Enterprise Edition
J2ME Java 2 Micro Edition
MMS Multi Media Messaging
MOTS Modified Off-The-Shelf
MP3 MPEG1 Layer 3
MPEG Moving Picture Experts Group
MVC Model-View-Controller architectural pattern
NFR Non-functional Requirements
OCM Original Component Manufacturer
ODBC Open DataBase Connectivity
OLE Object Linking and Embedding
OS Operating System
OSE Open System Environment
OSI Open Systems Interconnection Model
OSS Operating Support Systems
P2P Peer-to-Peer
PAC Presentation-Abstraction-Control
PAs Presence Agents
PC Personal Computer
PDA Personal Digital Assistant
PING Packet INternet Groper
QoS Quality of Service
RPC Remote Procedure Call
RTP Rapid Transport Protocol
RTSP Real-Time Streaming Protocol
SIP Session Initiation Protocol
SLA Service Level Agreement
SMC Service Management Component
SMS Short Message Service
SQL Structured Query Language

Architecture Handbook

Deliverable ID: D4 (Part D)

Page : 8 of 77

Version: 1.06
Date: 20 May 04

Status :Proposal
Confid. : Restricted

 Copyright WISE Consortium

TCP/IP Transmission Control Protocol/ Internet Protocol
TOM Telecom Operations Management
UDP User Datagram Protocol
UE Universal Explorer
UIML User Interface Markup Language
WAP Wireless Application Protocol.
WISA Wireless Internet Service Architecture
VM Virtual Machine / memory
VP Viewpoint
WWW World Wide Web
VXML Voice eXtensible Markup Language
XML eXtensible Markup Language

Architecture Handbook

Deliverable ID: D4 (Part D)

Page : 9 of 77

Version: 1.06
Date: 20 May 04

Status :Proposal
Confid. : Restricted

 Copyright WISE Consortium

3. TYPICAL ARCHITECTURES

When a software system developer (team) enters a new domain, several problems and issues are faced for
the first time. First of all it is important to understand the new domain in terms of terminology, concepts and
relationships among them. In particular it is useful to have a reference architecture that describes the
functions and the corresponding decomposition. In fact each domain, and wireless Internet services are no
exception, adopts a typical decomposition of functions and features. These details are provided by the D4
part A, which is a sort of introduction to the fundamental architectural concepts of the wireless Internet
services domain.

Once the domain is known in its basic concepts the problem is where to start to develop a wireless service.
While the reference architecture provides the generic guidelines to design the architecture, it is too abstract.
Often the right point to start from is an example. The architectures presented in this chapter play exactly this
role: they are examples of typical architectures of wireless services.

The novice wireless service developer can build a new service starting from one of these typical
architectures. The description of the typical architectures presented in this chapter is kept at a fairly abstract
level, avoiding application specific details that could hinder the comprehension. In addition keeping a high
level of abstraction makes it possible to easily adapt the architecture to specific requirements.

The process we followed to find the typical architectures presented here consists in the following steps:

• identification of possible sources of architectures
• mining of the source to find suitable architectures
• abstraction of the architectures to purge application-specific details
• repackaging of the architectures using the WISE guidelines.

After a brief investigation we identified three main sources of information that could provide us with
meaningful wireless services architectures, they are:

• WISE pilots
• External published projects
• Interviews

The pilots developed inside this project emerged immediately as good candidates to provide wireless
services architectures that could be used as examples. A natural objection could be that they are prototypal
applications and thus not meaningful in an industrial contexts. There are two answers to this objection. First,
event though prototypal, they address typical real-world problem and are developed by the industry
therefore their architectures are of interests. Second, there is anecdotal evidence that the vast majority of
wireless services are first developed as quick prototypes and only after the first period of service they are
engineered to achieve scalability and efficiency.

Another source of potential typical architecture is represented by other projects operating in the domain of
wireless services. The architectures can be found by looking at the deliverables or dissemination documents
produced by such projects.

Finally, typical architectures can be extracted from the results of interviews with wireless service developers.
We considered the option of carrying a series of interviews with developers working in companies
developing wireless services. In fact there are several services either deployed or under development.

In this version of the handbook we mined the architectures only from the pilots. In the next iteration we plan
to exploit the other sources too.

Architecture Handbook

Deliverable ID: D4 (Part D)

Page : 10 of 77

Version: 1.06
Date: 20 May 04

Status :Proposal
Confid. : Restricted

 Copyright WISE Consortium

The mining phase has the purpose of finding suitable architectures. The key point here lies in the definition
of what is suitable. The approach we taken is based on subjective judgment. The directive adopted in such
a judgment is to consider suitable an architecture that addresses a typical problem and potentially can be
applied to several similar cases.
In the case of the pilots, since they were chosen for their representativeness, the pilots’ architectures match
the above directive.

The abstraction phase aims at removing all the application specific details. An important decision, in this
phase, has to be taken on which details are specific and which are generic. As a rule of thumb we state that
application specific details are those that do not occur across similar services. The goal of this phase is to
produce a stripped down architecture that both can be easily understood and is easy to customize.

Finally, it is important to describe the architectures in a uniform way, both in terms of content and notation.
In principle the architecture can be found originally in very different forms. In this phase we describe them
using the notation defined in D4 part A and the guidelines provided in D4 part B.

3.1 TA1: ADAPTATION OF WEB-BASED CONTENT PROVISIONING

This typical architecture describes an approach that can be used to adapt existing web-based applications
to the wireless services context. This typical architecture is particularly aimed at content provisioning
services, i.e. applications that allow browsing of information and reading of news. The main differences
between a web-based application and its wireless counterpart consist in lower bandwidth available and
reduced terminal presentation capabilities (mainly reduced display size and graphical functions).
Typical examples of such services are: stock quote monitoring, news reading, etc.

The main issues that characterize this architecture are:

• limited bandwidth,
• device limitation.

The user terminal must receive information which may be complex and are updated often; this requires a
certain amount of bandwidth, and therefore we ought to adopt an appropriate protocol. In addition the
presentation of information may require graphical capabilities and processing power on the user terminal
side.
The essential feature of this typical architecture is the presence of a significant amount of information that is
updated asynchronously, this updates must be conveyed to the users of the system so they can rely on
recent information.

The application can provide information using the WAP protocol, which can be implemented in parallel to
the existing HTTP. This approach allows reusing most of the system and developing only the presentation
part. Since WAP and WML are simplified versions of HTTP and HTML respectively, the development of the
new presentation part can be derived from the existing one.

This type of service is based on an asymmetric protocol, i.e. the client decides autonomously when to read
information from the server. Thus the server must collect all the updates and feed them to the client when
they connect. On their turn, clients have to connect periodically to load the updated information.
In this process an essential role is played by the cache database. Its purpose is to keep an up-to-date copy
of the information that is required by the users.

The limited bandwidth issue is solved by using a “slimmer” protocol than HTTP that is WAP.
The device limitation is addressed leveraging the WML browser built-in in the device.

Architecture Handbook

Deliverable ID: D4 (Part D)

Page : 11 of 77

Version: 1.06
Date: 20 May 04

Status :Proposal
Confid. : Restricted

 Copyright WISE Consortium

3.1.1 Conceptual Architecture
The following subsections describe the conceptual pilot architecture from different perspectives (or
architectural views) according to D4 viewpoints.

3.1.1.1 Structural View

3.1.1.1.1 System Context
The system operates as an extension of a pre-existing web-based system. These two applications share
several components as shown in Figure 1. The web server in addition to serving HTML pages must be able
to serve WML pages through the WAP protocol which is managed by the gateway.
The wireless version can use the same caching database as the wireline version.

GSM
GPRS
UMTS

Carrier
Networks

latigid WAP
Gateway

Firewall

latigid

WEB
Server

Back-end system
Wireless Devices

Caching DB

Content
provider

WEB domain
Wireless domain

Figure 1. Overview of the execution environment.

3.1.1.1.2 Conceptual Structure
The functional conceptual structure is presented in Figure 2. The service provided actually consists in
presentation and administration. The information presented is provided by a domain specific content
provider service, which may have several different interfaces. The integration of the presentation and back-
end features is achieved through a caching and adaptation service. Both the mobile and fixed users make
use of the same User Service functionality.

Architecture Handbook

Deliverable ID: D4 (Part D)

Page : 12 of 77

Version: 1.06
Date: 20 May 04

Status :Proposal
Confid. : Restricted

 Copyright WISE Consortium

<<Domain>> End User Applications

<<Domain>> Domain Support Services

<<Domain>>
Management Processes

Service

User
Authentication

User Profiles

Content
provider

<<Domain>> Application

<<Uses>>

<<Uses>>

User
Service

Adaptation

<<Uses>>
Administation

Service

<<Uses>>

Mobile
Service

User

<<Uses>>
System

Administrator

<<Uses>>

Fixed
Service

User

<<Uses>>

<<Uses>>

Billing

<<Uses>>

Caching
<<Uses>>

Figure 2 : Conceptual structure

The descriptions of actors are in Table 1 and the responsibilities of conceptual elements in Table 2.

Table 1: Actors

Conceptual Element Description
Mobile Service User Uses the service from mobile device.
Fixed Service User Uses the service from a web browser.
System Administrator Manages access rights.

Table 2: Responsibilities of conceptual elements.

Conceptual Element Responsibility
User Service Provides the presentation of information for both mobile and fixed users.
Caching Keep an up-to-date copy of the information required by the users to improve

performance
Adaptation Receives and adapts the information produced by the back end
User Authentication Takes care of authentication, security and user classes.
User Profiles Stores user profile information.
Back-end Service Provides the content to be feed to the users.

3.1.1.2 Behavioural View

Behavioural views are based on the main use cases of the system and presented as UML collaboration
diagram. For this typical architecture these views are not relevant.

Architecture Handbook

Deliverable ID: D4 (Part D)

Page : 13 of 77

Version: 1.06
Date: 20 May 04

Status :Proposal
Confid. : Restricted

 Copyright WISE Consortium

3.1.1.3 Deployment View

The deployment of conceptual entities to system nodes is depicted in Figure 3. Both mobile and fixed
network devices connect to unique access node, the former through a WAP gateway and the internet, the
latter directly through internet. The access node host the presentation-related user service, this node can be
separated from the server node hosting the caching and adaptation service together with other supporting
services. Finally the content provider sits on a separate node.

 Mobile Device

 Fixed

 Server Node

 Access Node

 Content Provider
Server

 User Service

 User Service

 User Service

 User
Authentication

 User Profiles Content
Provider

 Caching
Adaptation

html

WAP

html

* *

*
1

1

*

*

1

Figure 3: Conceptual Deployment

3.1.1.4 Development View

3.1.1.4.1 Business Context
The business model for this typical architecture is depicted in Figure 9.
Business roles in dark play some task in the operation of the service (role Network Operator is optional and
not investigated in the Wise context). This task can either involve service provisioning (see those roles
inside the dashed box) if there is some software components deployed in a networked structure, or not
involve service provisioning (see roles outside the dashed box) if they have a business relationship prior to
service provisioning (e.g. Application providers).

Architecture Handbook

Deliverable ID: D4 (Part D)

Page : 14 of 77

Version: 1.06
Date: 20 May 04

Status :Proposal
Confid. : Restricted

 Copyright WISE Consortium

ServiceUser ServiceProviderNetworkOperator ContentProviderSP2CPApplicationProviderAP2SPU2SPAP2SP: Application provider to content providerU2SP: User to service providerSP2CP: Service provider to content provider

Figure 4. The business model

There are four main roles involved in the business model underpinning this typical architecture. The
Application Provider delivers the application(s) used to present the information, cache the content, and to
receive and adapt the content coming from the source. The Content Provider is the source of the information
that will be presented to the user, who plays the role named Service User. All the roles defined in the
business model can be played by multiple actors; of course there will be many users, but it is also possible
to have several sources of information and different applications. Table 3 explains in more detail the
monetary and information flows of the Figure 9.

Table 3: Monetary and information flows between the business actors.

Business flow Type of the flow Explanation
Service Provider to
Service User

Content The service provider provides the information required
and updates it as it changes

Service User to
Service Provider

Money The user pay the service provider to get the service

Content Provider to
Service Provider

Quotes Updates The service provider receives the updates form the
content provider.

Application Provider
to Service Provider

Application
(+ use license)

The application provider provides the application that
manipulates the content to the service provider

Service Provider to
Content Provider

Money The service provider pays for the application

3.2 TA2: RICH INTERACTION

This typical architecture provides support for services featuring rich interaction and communication intensive
(e.g. interactive multiplayer games) using thick client s. We consider thick clients that have some computing
power (e.g. Java ME) including both smart-phones and wireless-enabled PDAs.
This typical architecture abstracts the essential features common to a category of wireless services. This
category is characterized by a number of clients interacting with a server that is responsible for updating the
shared state and keeping the clients consistent.
Typical examples of such services are: interactive multiplayer games, fleet position monitoring, etc.

Architecture Handbook

Deliverable ID: D4 (Part D)

Page : 15 of 77

Version: 1.06
Date: 20 May 04

Status :Proposal
Confid. : Restricted

 Copyright WISE Consortium

While the previous typical architecture focused on a significant amount of that needs to be updated
regularly, this architecture focus more on a timely and frequent update of small quantities of data and the
consistency among the information presented to the users.

The main issues addressed by this category of wireless systems are:

• Synchronization between clients and server
• Bandwidth limitation
• Device capability limitation

Rich interactions require a frequent synchronization between the server and the user terminals; the server
has to send the terminal updated information. As a consequence there is the need for a high bandwidth,
which is in contrast with the limited availability in wireless networks. In addition the user terminal should be
able to present a complex and evolving set of information.

The contrasting issues of frequent synchronization of the clients and limited bandwidth availability are
solved by an ad-hoc protocol based on UDP that has a limited overhead. As a result the latency is within the
acceptable limits.
The limited device capabilities are solved using an ad hoc graphical interface, since the built-in WML
capabilities were not sufficient.

3.2.1 Conceptual Architecture
The following subsections describe the conceptual pilot architecture from different perspectives (or
architectural views) according to D4 viewpoints.

3.2.1.1 Structural View

3.2.1.1.1 System Context
The networked environment for the application is presented in Figure 5. Clients have access to a GPRS
network (UTMS in the future) which is connected to Internet, by means of a GGS Node. Having this access
to Internet, clients are able to connect the Server. The Server uses Management Services (such as
authentication and authorisation) which are provided by a host running on a node on the network (either in
the same LAN or remote).

Architecture Handbook

Deliverable ID: D4 (Part D)

Page : 16 of 77

Version: 1.06
Date: 20 May 04

Status :Proposal
Confid. : Restricted

 Copyright WISE Consortium

App Client

App Server Management
Server

GPRS
Network

Internet
Network

GGSN

Router Router

BTS

BTS

App Client

GPRS

GPRS

Figure 5. Overview of the execution environment.

3.2.1.1.2 Functional Structure

One of the main goals of selecting the conceptual entities was first to identify the generic application domain
services that are common for different kind of computer games (and possibly other entertainment services).
These generic services could be reused as a platform for different game applications. One of the main goals
of Wise project is to provide a generic architecture for developing wireless services. The draft of conceptual
structure is presented in Figure 6. The responsibilities of each entity are presented in a table.

Architecture Handbook

Deliverable ID: D4 (Part D)

Page : 17 of 77

Version: 1.06
Date: 20 May 04

Status :Proposal
Confid. : Restricted

 Copyright WISE Consortium

<<Application>> Application Domain

<<Domain>> Application Domain
Support services

<<Domain>> End User Applications

<<Uses>>

<<Domain>> Technology Platforms

Actor1

<<Uses>>

<<Service>>
J2ME

<<Uses>>

<<Service>>
WISE Message

Transport

<<Uses>>

<<Application>>
App Client

<<Application>>
App Server<<Uses>>

<<Service>> UDP
Protocol

<<Uses>>

<<Service>>
J2EE

<<Uses>>

<<Domain>> Service Management Services

<<Service>>
Authentication

&
Authorisation

<<Service>>
User Profile

Management

<<Service>>
Accounting

<<Domain>> Accounting and Mediation

<<Service>>
Mediation

<<Service>>
Client Code
Deployment

<<Domain>> Provisioning

<<Service>>
Self

Subscription

<<Domain>> User Management

Figure 6. Conceptual structure

The responsibilities of the elements presented in the in conceptual structure are the following:

Conceptual Element Responsibilities
App Client Provides graphical user interface and handles the user visible subset of data.
App Server Handles the data status and synchronizes the state between different users.
Service Management Services Provides a set of common management services as described in D4B. Used

services belong to the User Management Domain (Authentication and
Authorisation and User Profile Management), Provisioning Domain (Client
Code Deployment and Self-Subscription) and the Billing Domain
(Accounting and Mediation).

WISE Message Transport Provides a generic message-based communication service, supporting both
synchronous and asynchronous modes. It is based on UDP Service.

J2ME Java 2 Micro Edition. It is the version for mobile devices of Java.
UDP protocol The well-known unreliable message service over IP
J2EE Java 2 Enterprise Edition. It is a java based platform which provides a full set

of services for developing and running java server-side application.

The application is divided into client and server; this implies the choice of client server architectural style.
The reasons to select this style are:

(1) users access the service using mobile devices, with limited processing power and memory and
therefore, it is obvious to concentrate a computational intensive common, shared part on the server.

(2) a capability to manage several wireless network connections at the same time, results in the server
to be a robust, thick server, whereas terminals are clients only hosting the user applications

(3) cient-server style easily achieves scalability.

Architecture Handbook

Deliverable ID: D4 (Part D)

Page : 18 of 77

Version: 1.06
Date: 20 May 04

Status :Proposal
Confid. : Restricted

 Copyright WISE Consortium

Entity Wise Message Transport is particularly important because, for satisfying the requirements of a real-
time service (i.e. the synchronization between the client and the server), a reliable message based protocol
is needed (currently many J2ME/J2EE application based uses HTTP to communicate which was proved not
adequate for the scope of the project).

3.2.1.2 Behavioural View

Figure 7 presents a collaboration diagram describing the typical scenario of a rich interaction architecture.
Typically the users perform operations upon their client applications; such operations are notified to the
server through the WISE message transport and modify the state of the system. Once the system state
undergoes a change, it has to be communicated to the clients allowing all of them to share a common
consistent view of the system.

<<Application>> Application Domain

<<Domain>> Application Domain
Support services

<<Service>> WISE
Message Transport

<<Domain>> End User Applications

<<Application>>
App Client

<<Application>>
App Server

2. Client uses
communication to

contact server.

3. Server is notified
the operation

End User

1. User perform
operation

4. Update
global state

5. Server uses
communication to contact

clients.

6. Client receives
state update

Figure 7. User login collaboration

Architecture Handbook

Deliverable ID: D4 (Part D)

Page : 19 of 77

Version: 1.06
Date: 20 May 04

Status :Proposal
Confid. : Restricted

 Copyright WISE Consortium

3.2.1.3 Deployment View

Service Management

Game Server

UDP

HTTP

<<Application>>
App Server

<<Service>>
WISE Message

Transport

Mobile Terminal

<<Service>> WISE
Message Transport

<<Domain>> Service Management Services

<<Service>>
Authentication

&
Authorisation

<<Service>>
User Profile

Management

<<Service>>
Accounting

<<Domain>> Accounting and Mediation

<<Service>>
Mediation

<<Service>>
Client Code
Deployment

<<Domain>> Provisioning

<<Service>>
Self

Subscription

<<Domain>> User Management

TCP

<<Service>> Accounting

<<Application>>
App Client

Figure 8. Conceptual deployment.

It is assumed that a server node handles the management of a number of users with mobile devices. The
server handles all synchronization and communication; direct communication between mobile terminals is
not allowed. Finally, the management services are most likely in a separate node.
Accounting Service is present on the server to collect usage data and billing queries.

3.2.1.4 Development View
We focus on a typical business model. We skip the topology model because it is too project-specific.

3.2.1.4.1 Business Model
The Business Model instantiated for this typical architecture is depicted in Figure 9, in which only relevant
Business Roles and Business Relationships are represented.

Architecture Handbook

Deliverable ID: D4 (Part D)

Page : 20 of 77

Version: 1.06
Date: 20 May 04

Status :Proposal
Confid. : Restricted

 Copyright WISE Consortium

NetworkOperator(*) Not involved in service provisioning
Used for the definition of the ArchitectureU2SP: User to service providerTechProv: Technology provider to service user

(*)ServiceUser ServiceProviderApplicProvTechnologyProviderTechProvClient terminal ApplicationProviderApp CompanyU2SP (*)Application ProviderApplicProv ServiceProviderService MgmtPeer
Peer: between Service providers (for composed service provisioning)ApplicProv: Application provider to Service user/provider

Figure 9. The Business Model

Business roles in dark play some task in the operation of the service. This task can either involve service
provisioning (see those roles inside the dashed box) if there will be some software components deployed in
a networked structure, or not involve service provisioning (see roles outside the dashed box) if they have a
business relationship prior to service provisioning (e.g. Technology provider).

The relationship ApplicProv deserves more attention. This business relationship models download prior to
provisioning. The download supports the acquisition from the user side, of the application (i.e. client
components) need to access the service. Download can be in principle carried out from both a fixed node
(e.g. using any Internet browser) and a mobile node.

3.2.2 Concrete Architecture
The following describes the concrete pilot architecture from different perspectives (or architectural views)
according to D4 viewpoints.

3.2.2.1 Structural View

3.2.2.1.1 Inter Component Diagrams

The Inter-component Diagram is depicted in Figure 10. It provides the system level structural view of
distributed components and their interconnections.

Architecture Handbook

Deliverable ID: D4 (Part D)

Page : 21 of 77

Version: 1.06
Date: 20 May 04

Status :Proposal
Confid. : Restricted

 Copyright WISE Consortium

Authentication
Server

Accounting
Agent

User Profile
Server

AppClient AppSever

Client Code
Deployment

Server

KJava
Support

Self Subscription
Server

WAP
Browser

HTML
Browser

Figure 10: Inter-component Diagram

Service Management Components provides the required services. The Self Subscription Server allows the
customer to subscribe a service (in this case the Game Service) by means of a WAP browser available on
the mobile phone or an HTML browser from a PC.

Kjava support component is part of the technology already available on the terminal platform; it allows to
download the application from a set of sources, i.e. remote server, PC, etc.

In the domain of the Service Provider, two components implement service-specific functionality: component
Game Server implements the application and the coordination of each service session.
Client Code Download Server is a service-common component, providing support for the end-user to
choose and download the application (on the client side) implementing the GUI of the application.

At last, on the client side there is the component providing service-specific functionality (on the left side of
Figure 10): the Game Client implements the GUI and the processing of data related to an on-going service
provisioning. It locally interacts with component Communication Manager that supports distributed
communication with the remote Service Provider. The component implements the game, and is downloaded
from a Client Code Download Server as modelled by dependency arrows from the components to the Client
Code Download Server.

Architecture Handbook

Deliverable ID: D4 (Part D)

Page : 22 of 77

Version: 1.06
Date: 20 May 04

Status :Proposal
Confid. : Restricted

 Copyright WISE Consortium

4. PATTERN CATALOG
Here we present a catalog of patterns that can be used to develop wireless services.

4.1 DESCRIPTION OF SELECTED ARCHITECTURAL STYLES AND PATTERNS

This section introduces a set of architectural styles and patterns applicable in wireless service engineering.
Table 4 lists a set of architectural styles and patterns and reasons why they are considered to be relevant in
the development of service architectures of wireless services. The purpose of the selected styles and
patterns is to assist the architect of an end-user service to select appropriate patterns based on the quality
requirements set to the new service.

Structural aspects are generally more important than functional aspects when specifying a conceptual
architecture for a system. N-Tier Client-Server is the most used style in the conceptual architecture of
wireless systems. The Peer-to-Peer style is in the second place. If several pattern alternatives have to be
applied for the conceptual architecture, then begin with the pattern that addresses the most important
architectural aspect. The tiered style is often used in the conceptual deployment viewpoint.

Table 4. Architectural styles and patterns.

Style or pattern Rationale of selection to wireless service engineering
N-Tier Client-Server Supports to decompose software functionality into tiers that

communicate in the client-server fashion.
Peer-to-Peer Supports loose-coupling, independence of services without centralized

servers.
Blackboard Is a data centered style that provides flexibility required for adaptation

of services.
Pipes & Filters Is a data flow centered style that supports modifiability and reuse.
Tiered Is used to partition a wireless system into logically separated tiers.

Each tier has a unique responsibility in the system.
Broker Provides support for distribution transparency.
Layered style Supports to decompose the software into strict ordered horizontal

layers where each layer provides its higher-level layer or layers with a
cohesive set of services with a public interface.

Model-View-Controller Supports separation of concerns and decomposition of responsibilities
of application logic from user interfaces.

Presentation-Abstraction-
Control

Provides higher independence of components of a service.
Generalized from the MVC pattern.

The introduction of each style and pattern is described by the following structure:
• An overview gives a brief description of the style or pattern.
• Intent describes the situation when the use of the pattern or style is appropriate.
• Application of a style or pattern is described by conceptual or concrete structures.
• Consequences (benefits and shortcomings) the style or pattern provides.
• Known uses give examples of the use of the style or pattern.
• See also gives references to patterns that solve similar problems.
• Variants gives references to variants of the style or pattern

Architecture Handbook

Deliverable ID: D4 (Part D)

Page : 23 of 77

Version: 1.06
Date: 20 May 04

Status :Proposal
Confid. : Restricted

 Copyright WISE Consortium

4.1.1 N-Tier Client-Server (C/S) style

4.1.1.1 Overview
The N-tier Client-Server architecture means an architectural style in which software functionality is
decomposed into tiers that communicate in the client-server fashion. The style is a combination of the
Tiered style [26] (a specialization of the decomposition style in the module category) and the Client-Server
style [26] in the runtime structure category.

Table 5. Summary of the N-Tier Client-Server style

Elements - Component types:
• Clients request services of server components
• Servers provide services to client components
• Middle-tier components establish communication channels

between clients and servers
- Environmental elements: network nodes
- Connector types: remote procedure calls, the asymmetric invocation of

server's services by a client

Relations Attachment relation

- associates clients with the request role of the connector and servers
with the reply role of the connector and determines which services can
be requested by which clients

Allocated-to relation
- either static or dynamic allocation of clients and servers to

environmental elements

Computational
model

Clients request services from servers and wait for the results of those
requests

Properties of
elements

Client
- Name: should suggest the functionality of the component
- Type: defines general functionality, the number and types of ports, and

required properties
- Required hardware properties
- Other properties: depend on the type of the component, including

quality attributes such as performance and reliability.
Server
- Name: should suggest the functionality of the component
- Type: defines general functionality, the number and types of ports, and

required properties
- Required hardware properties
- The numbers and types of clients that can be attached
- Other properties: depend on the type of the component, including

quality attributes such as performance (transactions per second) and
reliability.

Middle-tier
- Name: should suggest the functionality of the component
- Type: defines general functionality, the number and types of ports, and

required properties
- Required hardware properties
- The number and types of clients that can be attached

Architecture Handbook

Deliverable ID: D4 (Part D)

Page : 24 of 77

Version: 1.06
Date: 20 May 04

Status :Proposal
Confid. : Restricted

 Copyright WISE Consortium

- The number and types of servers that can be registered
- Other properties: depend on the type of the component, including

quality attributes such as performance and reliability.
Environmental element
- Required hardware properties such as processing, memory and

capacity requirements, and fault tolerance
Connector
- Name: should suggest the nature of interactions
- Type: defines the nature of interaction (remote procedure call), the

number and types of roles, and required properties
- Other properties: depend on the type of the connector, may include

interaction protocols and quality attributes such as performance and
reliability.

Topology N-tiered topology: a node configuration is bound with a division of

software functionality into tiers that communicate in the client-server
fashion

4.1.1.2 Intent

The Clienet-Server style decouples client applications from the services they use [26]. Its goal is to achieve
modifiability and portability [1]. In N-tier Client-Server architectures, client and server components can be
independently assigned to tiers or moved from platform to platform, thereby enhancing performance
scalability, flexibility, failure recovery, functionality and reliability [8],[31].

4.1.1.3 Conceptual structure
N-tier Client-Server structures are very often presented in architectures that combine the N-tier Client
Server style and the deployment style. Figure 11 shows a two-tier Client-Server architecture [26] combined
with the deployment style. In this architecture client nodes are usually user interface systems or terminals
such as PCs, PDAs or mobile phones on which users run applications. Clients rely on servers for resources,
such as files, devices, processing power and application and management software services. Server nodes
are usually powerful computers or processes dedicated to managing disk drives (file servers), printers (print
servers), network traffic (network servers), or application services. The two-tier Client-Server style has
several benefits such as simplicity and efficiency in small systems. The style has some weaknesses such as
scalability problems when the variety and number of clients and requests as well the size of the objects
increase.

In the three-tier Client-Server architecture, a middle tier has been added between the client environment
and the management server environment (Figure 12). The Client-Dispatcher-Server pattern [7] describes
one variant of this architecture. This architecture provides a further separation of concerns in the overall
architecture. There are a variety of ways of implementing this middle tier, such as transaction processing
monitors, messaging servers and application servers. The middle tier can perform queuing, application
execution, business rules execution, and database staging. The three-tier architecture has several benefits
in comparison with the two-tier architecture such as exchangeability, location and migration transparency
and re-configuration of servers [7].

A large variety of servers, clients and middle-tier components may coexist in the three-tier Client-Server
architecture. The client nodes may be thin (e.g. simple Web clients), rich (e.g. Web clients with Java applets
or ActiveX controls), or fat (e.g. distributed object clients). The three-tier architecture imposes some
liabilities such as lower efficiency through indirection and explicit connection establishment as well as
sensitivity to change in the interfaces of the middle-tier component [7].

Architecture Handbook

Deliverable ID: D4 (Part D)

Page : 25 of 77

Version: 1.06
Date: 20 May 04

Status :Proposal
Confid. : Restricted

 Copyright WISE Consortium

There may be more tiers in a Client-Server architecture, for example, the J2EE platform [12] is a five-tier
Client-Server architecture including the following five tiers: Client Tier, Presentation Tier, Business Tier,
Integration Tier, and Resource Tier. Two or more of the tiers such as the Presentation Tier, Business Tier,
Integration Tier may be allocated to one node in a distributed system [58].

Client Node Server NodeService Request

Provided Service

Client
Component

Server
Component

Figure 11. Two-tier Client Server architecture.

Resouce TierMiddle TierClient Tier
Service Request

Server Response

Server Request

Provided Service

Client
Component

Server
Component

Middle-Tier
Component

Figure 12. Three-tier Client Server architecture.

4.1.1.4 Known uses
N-tier client-server architectures are used in various systems throughout military and industry. The N-tier
client-server style (N>2) has also been applied in many wireless systems, for example to build mobile
database applications using the Java technology [58].

The three-tier client-server architecture in Figure 13 has been re-designed from [31]. The middle tier is
implemented by the Component Adapter using the Adapter design pattern [16]. It has been allocated to the
Server node in this example. Middleware creates instances of a server component as required, and controls
the lifetime of the component and its adapter. The component adapter intercepts all service requests
between the client component and the server component and applies server services such as transactions
and security. The client is unaware of the interception. The server component can use the component
adapter for example for querying for client security credentials. [31]

Architecture Handbook

Deliverable ID: D4 (Part D)

Page : 26 of 77

Version: 1.06
Date: 20 May 04

Status :Proposal
Confid. : Restricted

 Copyright WISE Consortium

Client Node Server Node

Client
Component

Middleware

* 1

Wireless protocol

Server
Component

Component
Adapter

Middleware

3: Create Adapter

6: Call Service Request

5: Return Reference to Adapter

4: Create Component Instance

2: Forward Component Request

7: Forward Service Request

1: Request Component

Figure 13. Middleware controls the lifetime of the component and its adapter in the three-tier Client
Server architecture (re-designed from [31])

4.1.2 Peer-to-Peer (P2P)

4.1.2.1 Overview
P2P means network architecture, where information is divided between the participating nodes without
centralizing it to one server [41]). In P2P model, resources can also be switched between the systems [23].
Because accessing the decentralized resources means operating in an environment of unstable connectivity
and unpredictable IP addresses, P2P nodes must operate outside the DNS system and have significant or
total autonomy from central servers. [11].

P2P architectures can be classified according to its topology into the pure P2P style. The hybrid P2P style
and the mixed P2P style introduced next [40].

4.1.2.2 Intent
P2P is used in distributed computing applications and its aim is to provide maximum flexibility.

4.1.2.3 Conceptual structure
See different alternatives defined later on.

4.1.2.4 Consequences
P2P has the following advantages:
• The user can use resources and data from the other users and receive information from them.
• The amount of servers in the network is directly comparable with the amount of users.
• The work can be divided among the participating users and
• The users can directly communicate with each other [25]

The current P2P systems has the following weaknesses:

Architecture Handbook

Deliverable ID: D4 (Part D)

Page : 27 of 77

Version: 1.06
Date: 20 May 04

Status :Proposal
Confid. : Restricted

 Copyright WISE Consortium

• The identities of the used resources and services are not enough transparent and they have to be
localized and controlled manually.

• Search of information is limited.
• Lack of co-operation mechanism between the PCs.

Because of the weaknesses in the current P2P systems more advanced P2P architectures based on agents
have been developed. When developing P2P architectures it has to be taken account the quality and speed
of the information transmitted in the network and its possible misuse.

In Table 10 it is presented the features of P2P architectures and their evolution in time from the hybrid P2P
architecture to more advanced models. Alternative P2P architectures have been described more thoroughly
later on.

Table 6. Evolution of P2P styles.

Feature

Time

Transmitt
ed file-
format

Reliability Speed Exactness
of the
information

Extensiveness of
the searches

Privacy Safety

Pure P2P
(Gnutella,
Freenet)

All file-
formats

Very
reliable

High Quite exact Extensive,
because there is
not limit for the
searches

High Middle

Hybrid
P2P
(Napster)

MP3-files Unreliable
(if the
server
fails- the
whole
system
fails)

Low Sometimes
very
inaccurate,
because do
not support
searches of
the sub-
strings

Not extensive
(every server
maintains an
index that
includes just the
files of the
customers
attached to it)

Low Middle

Advanced
P2P

All file-
formats

Reliable High Exact Exhaustive High Middle

Table 7. Evolution of P2P styles continues.

Feature

Time

Nr of
users

User-
friendli
ness

Focusing of
the inf.

Effectiveness
of the resource
use

Dependency on
server

Operating
System

Total
effective
ness

Pure P2P
(Gnutella,
Freenet)

Low Low Low Low Server can be
chosen freely.

Almost all
platforms

Low

Hybrid
P2P
(Napster)

High High High High Server can not
be chosen

Windows
or Mac

High

Advanced
P2P

High High High High Server can be
chosen

Almost all
platforms

Highest

The comparison made in Table 6 proves that both the pure P2P model and the hybrid P2P model have
disadvantages and advantages the removal of which has at some extent succeeded in the more advanced
P2P models.

4.1.2.5 Known uses
The P2P architectural style has been used in Gnutella and Freenet.

Architecture Handbook

Deliverable ID: D4 (Part D)

Page : 28 of 77

Version: 1.06
Date: 20 May 04

Status :Proposal
Confid. : Restricted

 Copyright WISE Consortium

4.1.2.6 See also
The architecture of a Peer implements the Layered Architectural Pattern. The functions are layered one on
top of the other. The Peer-to-Peer system uses Pipes and Filters Pattern to effectively transfer data from
one system to another. The Broker pattern is used in Peer-to-Peer systems. Peers access other peers or
the server through the Broker Pattern. It acts as an interface between the system and the user.

4.1.2.7 Variants

4.1.2.7.1 Pure P2P

4.1.2.7.1.1 Overview
Nodes of the pure P2P are peers that can act as clients (like mobile phones) and servers. A peer has the
same capability as its neighbors without a centralized router. The pure P2P has two routing structures and
all nodes of the network are equal. The first one is a distributed catalogue and the other direct messaging.

4.1.2.7.1.2 Intent
Pure P2P can be used in small wireless systems to search for information in an extensive way and deliver
data in all file formats. Pure P2P suits well to dividing information between limited number of users.

4.1.2.7.1.3 Conceptual structure
Figure 6 presents the conceptual structure of the Gnutella that is a pure P2P architecture.

Figure 14. Gnutella as an example of the pure P2P style.

The functionality of Gnutella is described in the following [21]:

1) When you start up Gnutella your "servant" (mobile device) knows nothing of anything that has to do with

gnutellaNet. This is why you have to "add" an IP to connect to. Once your servant does connect to
another servant, then they start exchanging information. Things like "how many other servants are there
and what are their IPs" are exchanged over this link. Your servant may connect to many other servants;
it will communicate with all of them. Gnutella's architecture consists of dynamically changing amount of

User A

Wireless
device

User B

Wireless
device

Wireless
device

search/ dow nload

search/ dow nload

User C

search/ dow nload

Architecture Handbook

Deliverable ID: D4 (Part D)

Page : 29 of 77

Version: 1.06
Date: 20 May 04

Status :Proposal
Confid. : Restricted

 Copyright WISE Consortium

nodes that uses TCP/IP protocol. As the connection has been achieved, the node use HTTP (Hypertext
Transfer Protocol) protocol to communicate the communication happens via PING massages.

2) When you want to find a file, you type in the name of the searched file. Your servant then sends that to

all of the servants it is connected to, and all of them send it to all the servants they are connected to,
and so on. But, each servant also searches the files it knows it is sharing and sends those results back
to you.

3) Then you look through the list of files and decide to download the one you want. When you start the

download, your servant tries to connect with the servant that reported the match; if it can connect it will
start the download. If it cannot connect, usually because of a firewall, it will instead send a download
request to all the servants it is connected to. The request will then travel the same way as the original
search and eventually get to the servant that reported the match and it will try to connect back to you.
This is how it is possible for Gnutella to work if one of the hosts is behind a firewall.

4.1.2.7.1.4 Consequences
The advantages and disadvantages of P2P style are presented in Table 6.

4.1.2.7.1.5 Known uses
Example implementations are Gnutella [21] and Freenet (http://freenet.sourceforge.net/).

4.1.2.7.2 HYBRID P2P

4.1.2.7.2.1 Overview
In hybrid P2P the central server is responsible for maintaining a registry of shared information and
responding to queries for that information. The peers like mobile phones or PDAs are responsible for
hosting the information, communicating what is to be shared to the central server, and downloading it to
other peers upon request. This is centralized but not in the conventional Client Server sense. Route
terminals are used to hold catalogues of addresses. They are referenced by a set of indexes that determine
an address set.

4.1.2.7.2.2 Intent
Hybrid P2P suits exchanging information between a huge number of wireless users by holding a central
registry about all the information.

4.1.2.7.2.3 Conceptual structure
Figure 15 presents the conceptual structure of Napster that is a hybrid P2P style.

User A

Server

User B

Wireless
device

Wireless
device

search

dow nload

Architecture Handbook

Deliverable ID: D4 (Part D)

Page : 30 of 77

Version: 1.06
Date: 20 May 04

Status :Proposal
Confid. : Restricted

 Copyright WISE Consortium

Figure 15. Napster as an example of the hybrid P2P.

Napster functions in the following way: [21]

1) When you start up Napster your "client" that means the application that runs on your wireless device

connects to a predefined "server". Your client identifies it to the server and sends information about
yourself to it; most importantly it sends a list of the files you are sharing. The server then keeps track of
all the clients that are connected to it and which files they are sharing. Napster uses FTP (File Transfer
Protocol) as a communication protocol.

2) When you want to find a file, you type in what you are searching for. Your application sends your
request to the server and the server then sends back a list of all the clients that are sharing files that
match your request. This list is then displayed to you.

3) You look through the list and decide the one you want to download. When you select it and start the
download your client knows which client is sharing this file and connects directly to it, without the
server's intervention.
Consequences

The advantages and disadvantages of the hybrid style are presented in Table 6.

4.1.2.7.2.4 Known uses
Hybrid architectural style has been used in Napster for transmitting music files.

4.1.2.7.3 Agent-based P2P architecture

4.1.2.7.3.1 Overview
In an agent-based P2P architecture the user communicates with agents that are located inside the wireless
device and the agents can work on behalf of the human-users. The agents can learn from the past, work
together and consult each other. The agent-based P2P architectures also fulfill the deficiencies of the
current P2P architectures by offering most of the functions needed in ideal P2P systems. [25].

4.1.2.7.3.2 Intent
Agent based P2P architecture can be used for transmitting effectively all data formats in various wireless
applications.

4.1.2.7.3.3 Conceptual structure
Figure 16 presents the conceptual structure of the agent-based P2Pstyle.

Architecture Handbook

Deliverable ID: D4 (Part D)

Page : 31 of 77

Version: 1.06
Date: 20 May 04

Status :Proposal
Confid. : Restricted

 Copyright WISE Consortium

Figure 16. Agent-based P2P architecture style.

4.1.2.7.3.4 Consequences
The advantages and disadvantages of the agent based P2P-style is presented in Table 6.

4.1.2.7.3.5 Known uses
The agent-based P2P style has been used so far in pilot applications.

4.1.3 Blackboard

4.1.3.1 Overview
In Blackboard several specialized subsystems assemble their knowledge to build a possibly partial or
approximate solution. The idea behind the Blackboard architecture is a collection of independent programs
that work co-operatively on a common data structure. Each program is specialized in solving a particular
part of the overall task. The specialized programs are independent of each other. The direction taken by the
system is determined by the current state of the progress.

4.1.3.2 Intent
The Blackboard architectural pattern is useful for problems for which no deterministic solution strategies are
known. Blackboard suits best to the systems, where it is needed scalability in the form of adding consumers
of data without changing the procedures and modifiability in the form of changing who produces and
consumes which data. [4]

4.1.3.3 Conceptual structure
In Figure 17 it is presented the Blackboard architectural pattern, where all application components located
in a wireless device have access to a shared data space or blackboard. In the Blackboard pattern
application components look for particular kinds of data objects on the blackboard and produce new data
objects that are added to the blackboard. An optional co-ordinate component can be used to coordinate the
activation of application components. [15]

User A

Agent

User B

Agent of the
user B

Agent of the
user A

Agent

Architecture Handbook

Deliverable ID: D4 (Part D)

Page : 32 of 77

Version: 1.06
Date: 20 May 04

Status :Proposal
Confid. : Restricted

 Copyright WISE Consortium

Figure 17. Blackboard architectural pattern.

4.1.3.4 Consequences
The advantages of the Blackboard pattern are:

• Easy to maintain by adding data-types.
• Experimentation with different algorithms is possible.
• Support for changeability and maintainability.
• Reusable knowledge sources.
• Support for fault tolerance and robustness.

The Blackboard pattern has some liabilities:

• Performance is generally rather low
• Hard to identify unfulfilled responsibilities
• Difficulty of testing.
• No good solution is guaranteed.
• Difficult of establishing a good control strategy.
• Low efficiency. Blackboard systems suffer from computational overheads in rejecting wrong

hypothesis.
• High development effort.
• No support for parallelism. This means that concurrent access to the central data on the blackboard

must be synchronized.

4.1.3.5 Known uses
The first Blackboard system was the HEARSAY-II speech recognition system from the early 1970's. It was
developed as a natural language interface to a literature database. Blackboard has also been used in the
HASP system that was designed to detect enemy submarines. In this system, hydrophone arrays monitor a
sea area by collecting sonar signals.

4.1.3.6 See also
The Blackboard pattern has no similatities with other patterns.

Shared Data

Controller

Application

Application
Application

Architecture Handbook

Deliverable ID: D4 (Part D)

Page : 33 of 77

Version: 1.06
Date: 20 May 04

Status :Proposal
Confid. : Restricted

 Copyright WISE Consortium

4.1.4 Pipes and Filters

4.1.4.1 Overview
The Pipes-and-Filters style emphasizes the incremental transformation of data by successive components.
Filters are stream tansducers that incrementally transform data, use little contextual information, and retain
no state information between instantiations. Pipes are stateless and simply exist to move data between
filters. A pipe has a source end that can only be connected to a filter's output port and a sink end that can
only be connected to a filter's input port.

4.1.4.2 Intent
The Pipes-and-Filters style intents to view the system as a series of transformations on successive pieces of
input data. Data enters the system and flows through the components one at a time until they are assigned
to some final destination, output or a data store. Thus, the Pipes-and-Filters style intents to achieve
simplicity, maintainability and reusability of a system.

4.1.4.3 Conceptual structure
Figure 18 presents the conceptual structure of the Pipes-and-Filters style.

Figure 18. The Pipes-and-Filters style.

4.1.4.4 Consequences
The Pipes-and-Filters style has the following advantages:
• Simplicity due to limited ways to interact with the environment.
• Simplicity is achieved by a composition of primitive functions.
• Filters are reusable black-box components.
• Hierarchically composable; any combination of filters connected by pipes, can be packaged and used in

the external world as a filter.
• Parallel and distributed systems can easily be made; it enhances performance without modifications

The Pipes-and-Filters has also some liabilities:
• Batch mentality is implicitly encouraged; interactive applications are difficult to create.
• Filter ordering is difficult; there is no way for filters to cooperatively interact, more often control in

embedded into data to be transformed.
• Performance might be poor due to several reasons: 1) Input needs to be transformed into tokens and

thus, every filter pays this parsing/unparsing overhead. 2) The filter may need a buffer of unlimited size.
Otherwise the system could deadlock. 3) Each filter operates as a separate process and some overhead
follows from each time it is invoked.

4.1.4.5 Known uses
• UNIX family of operating systems

Pipes

Filters

Architecture Handbook

Deliverable ID: D4 (Part D)

Page : 34 of 77

Version: 1.06
Date: 20 May 04

Status :Proposal
Confid. : Restricted

 Copyright WISE Consortium

• DSP software (at the physical layer)
• The architecture of a system where sales agents submit orders vie handheld devices wirelessly to an

office-based server that co-ordinates the orders [24].

4.1.4.6 See also
The other data-flow-centered style used in classical data processing systems is the batch sequential style.
The style processes steps or components that are independent programs based on the assumption that
each step has to be completed before the next step starts. Each batch of data is transmitted as a whole
between steps.

4.1.5 Tiered style

4.1.5.1 Overview
The Tiered style is used to partition a wireless system into logically separated tiers. Each tier has a unique
responsibility in the system. A tier is logically separated from other tiers in the system, and is loosely
coupled with adjacent tiers.

4.1.5.2 Intent
The responsibility of conceptual elements in a wireless system, data flow among elements, locality of
processing, the presence and use of communication channels, and allocation to conceptual nodes of the
system all tend to be presented using the Tiered style.

4.1.5.3 Conceptual structure
An example of the conceptual structure of the Tiered style is shown in Figure 19 [12]. The client tier is
responsible for user interaction, user interface presentation and client devices. The presentation tier is
responsible for single sign-on, session management, content creation, format and delivery. The business
tier is responsible for business logic, transactions and data services. The integration tier is responsible for
resource adapters, legacy, external systems, rule engines and workflows. The resource tier is responsible
for resources, data and external services. The use relations between the tiers are allowed to be bi-
directional or symmetric.

Client Tier
Presentation

Tier
Business

Tier
Integration

Tier
Resource

Tier

«use»«use» «use»«use»

Figure 19. An example of the Tiered style (re-designed from [12])

4.1.5.4 Known uses

• The J2EE platform is a multitiered system [12]. There are the following five tiers in the tiered model:

Client Tier, Presentation Tier, Business Tier, Integration Tier, and Resource Tier.
• The three-tiered style has been used to decompose a mobile service system in the PALIO

(Personalised Access to Local Information and services for tOurists) project [3].

Architecture Handbook

Deliverable ID: D4 (Part D)

Page : 35 of 77

Version: 1.06
Date: 20 May 04

Status :Proposal
Confid. : Restricted

 Copyright WISE Consortium

4.1.5.5 See also
The Tiered style is often combined with another style (e.g. the Client-Server style) which results in a
combined style such as the N-Tier Client-Server style (Section 4.1.1) that shows the allocation of the
components of the Client-Server style into conceptual tiers. Tiers are often confused with layers [8].

4.1.6 Broker

4.1.6.1 Overview

By using the Broker pattern, a wireless application can access distributed services by sending massage
calls to the appropriate object (like network server) through the broker. The Broker architectural pattern
reduces the complexity involved in developing distributed applications because it makes distribution
transparent to the service developer [7].

4.1.6.2 Intent
The Broker architectural pattern is applied to structure distributed wireless systems with decoupled
components that interact by remote service invocations. A broker component is responsible for coordinating
communication between the client, server and proxies, such as forwarding requests, as well as transmitting
results and exceptions to the clients like mobile phones. Figure 20 presents the main elements of the Broker
architectural pattern [7].

4.1.6.3 Conceptual structure

Client S e rv e rB r id ge

Clie n t-s id e
p rox y

S e rv e r- s id e
p rox y

B ro ker

Figure 20. Broker architectural pattern.

4.1.6.4 Consequences
The Broker architectural pattern has the following benefits:
• Portability enhancements: A broker hides OS and network system details from clients and servers by

using layers, such as APIs, proxies and adapters.
• Interoperability with other brokers: Different brokers may interoperate through a bridge if they

understand a common protocol for exchanging messages.
• Reusability of services: When building new wireless applications, brokers enable the application

functionality to reuse existing services
• Location transparency: A broker is responsible for locating servers, so clients like mobile phones need

not know where servers are located.
• Changeability and extensibility of components: If the server implementation changes without affecting

interfaces clients should not be affected.

The disadvantaged of the Broker architectural pattern are:
• Restricted efficiency: Wireless applications using brokers may be slower than applications written

manually.

Architecture Handbook

Deliverable ID: D4 (Part D)

Page : 36 of 77

Version: 1.06
Date: 20 May 04

Status :Proposal
Confid. : Restricted

 Copyright WISE Consortium

• Lower fault tolerance: Compared with non-distributed wireless applications, distributed broker systems
may incur lower fault tolerance.

• Testing and debugging may be harder: Testing and debugging of distributed wireless systems is tedious
because of all the components involved.

4.1.6.5 Known uses
• CORBA
• IBM SOM/DSOM
• Microsoft’s OLE
• WWW
• ATM-P

4.1.6.6 See also
In the Proxy pattern the proxy encapsulates the interface and remote address of the server. The Mediator
design pattern replaces a web of inter-object connections by a star configuration in which the central
mediator component encapsulates collective behavior by defining a common interface for communicating
with objects.

4.1.6.7 Variants
The Transceiver-Parcel and Broker as Intermediary patterns [39] help to design an elastic architecture that
commits to the Broker idea and can be extended by adding components or reduce by removing them. The
Broker as Divorce Attorney pattern [39] helps to group and distribute the components of an application
across processes and processors in may different ways. The Broker as Matchmaker pattern [39] can be
used in the Broker architecture when coupling is a minor concern, and efficiency the highest priority

4.1.7 Layered style

4.1.7.1 Overview
The layered architectural style (Figure 21) helps to decompose the software into strict ordered horizontal
layers where each layer provides its higher-level layer or layers with a cohesive set of services with a public
interface [7] [8].

4.1.7.2 Intent
The Layered style suits best to the system where the tasks can be divided to application specific and
generic tasks. The generic tasks are specific to the underlying computing platform. In layered style
portability across computing platforms is important. [4]

4.1.7.3 Conceptual structure
Figure 5 presents the conceptual structure of the layered style. Layers represent virtual machines. Each
virtual machine provides a cohesive set of services with a public interface. The interface should be
independent of a particular platform. The layers should be independent of each other as much as possible.
The layer structure may remain stable even though the content of the layers may change. The allowed-to-
use relation associates layers with each other [8]. The usage of layers generally flows downward. Each
layer typically communicates only with the layer immediately below it. Upward usage is regarded as
exceptions to the rule and unrestricted upward usage is not allowed.

Architecture Handbook

Deliverable ID: D4 (Part D)

Page : 37 of 77

Version: 1.06
Date: 20 May 04

Status :Proposal
Confid. : Restricted

 Copyright WISE Consortium

«layer»
User Interface

«layer»
Core

allowed to use

«layer»
Basic Utility

allowed to use

«layer»
Useful System

allowed to use

Figure 21. The layered style.

4.1.7.4 Consequences
The benefits of the layered architectural style are:
• Reuse of layers. If an individual layer embodies a well-defined abstraction and has a well-defined and

documented interface, the layer can be used in multiple contexts.
• Support for standardization: Clearly defined and commonly accepted levels of abstraction enable the

development of standardized tasks and interfaces.
• Dependencies are kept local.
• Exchangeability as individual layer implementations can be replaced by semantically equivalent

implementations without too great effort.
• Easy to maintain as there are few dependencies on other layers.
• A wireless system can be built using layers of increasing abstraction.
• Implementation of each layer can be exchanged as long as the protocols are the same.
• Portability: low-level dependencies are hidden within a layer
• Enable some determination of the scope of the changes [8].

The layered architectural style has the following disadvantages:
• Cascades of changing behavior [7]
• Lower efficiency
• Unnecessary work
• Difficulty of establishing the correct granularity of the layers.
• Decreased performance (several switches of method context)
• Identification and delimitation of a layer is often difficult [18]

4.1.7.5 Known uses
• OSI protocol
• Virtual machines
• APIs
• Information systems
• Windows NT

Architecture Handbook

Deliverable ID: D4 (Part D)

Page : 38 of 77

Version: 1.06
Date: 20 May 04

Status :Proposal
Confid. : Restricted

 Copyright WISE Consortium

4.1.7.6 See also
The Layered style is often confused with other architectural styles such as the decomposition style and the
Tiered style [26]. The styles serve different concerns although their components may have a one-to-one
correspondence in an architecture [8].

A Microkernel architecture [7] can be considered as a specialized layered architecture. Overall PAC
structure (described later) is a tree of PAC nodes. PAC emphasizes that every logical node consists of three
components: presentation, abstraction and control while the Layered style does not prescribe any
subdivision of an individual layer [7].

4.1.8 Model-view-controller

4.1.8.1 Overview
The Model-View-Controller architectural pattern (MVC) divides an interactive application into three
components. The model contains the core functionality and data. View displays information to the user.
Controllers handle user input. Views and controllers together comprise the user interface of the mobile
device. A change-propagation mechanism ensures consistency between the user interface and the model.

4.1.8.2 Intent
MVC emphasizes modifiability and portability by applying separation of input and output-devices and use of
the unit-operation of the part-whole decomposition [4]. The separation is achieved by dividing an application
into three components.

4.1.8.3 Conceptual structure
In Figure 10 it is presented the functionality of MVC architectural pattern [7].

Figure 22. Model-View-Controller architectural pattern.

In the MVC architectural pattern the model component contains the functional core of the application. It
encapsulates the appropriate data and exports procedures that perform application-specific processing. The
model also provides functions to access its data.

The View components present information to the user by the aid of different views. Each view defines an
update procedure and when it is called, a view retrieves the current data values to be displayed from the
model and puts them on the screen.

The controller components accept user inputs as events.

4.1.8.4 Consequences
The application of MVC has several benefits:

• Multiple views of the same model

Model

Observer

View

Controller

Architecture Handbook

Deliverable ID: D4 (Part D)

Page : 39 of 77

Version: 1.06
Date: 20 May 04

Status :Proposal
Confid. : Restricted

 Copyright WISE Consortium

• Synchronized views
• Pluggable views and controllers
• Exchangeability of look and feel. A port of an MVC application to a new platform does not affect the

functional core of the application.
• Framework potential

MVC has the following liabilities:

• Increased complexity
• Potential for excessive number of updates
• Intimate connection between view and controller
• Close coupling of views and controllers to a model
• Inefficiency of data access in view
• Inevitability of change to view and controller when porting
• Difficulty of using MVC with modern user-interface tools

4.1.8.5 Known uses
• The best-known example of the use of MVC is the user-interface framework in the Smalltalk

environment. MVC was established to build reusable components for the user interface. The tools that
make up the Smalltalk development environment share these components. The Document-View variant
of the MVC-pattern is integrated in the Visual C++ environment for developing Windows applications.

• The MVC pattern has been used to discover an extensible, maintainable, scalable and portable
structure for mobile applications in the PALIO (Personalised Access to Local Information and services
for tOurists) project [3].

• The MVC pattern has been used in designing wireless clients with the Java technology [52]

4.1.8.6 See also
The Presentation-Abstraction-Control pattern takes a different approach to decoupling the user-interface
aspects of a system from its functional core. Its abstraction component corresponds to the model in MVC,
and the view and controller are combined into a presentation component. Communication between
abstraction and presentation components is decoupled by the control component. The interaction between
presentation and abstraction is not limited to calling an update-procedure.

The Model-View-Controller (MVC) architectural pattern combined with the Facade [16] and Proxy [16]
patterns can be used for supporting data models in both online and offline operating modes in wireless
systems. The MVC pattern isolates the GUI from the data access, which is done via the network from the
server or locally from the device's database. This separation is fundamental for the implementation of a
disconnected mode of operation. The Facade structural design pattern can be used to hide the complexity
of the client-side data model implementation. The Proxy design pattern can be used to abstract the logic
that deals with accessing remote data, such as the client/server communication protocol, and any related
optimization, such as caching. The proxy component of the pattern provides a placeholder to another object
to control access to that object.

4.1.9 Presentation-abstraction-control (PAC)

4.1.9.1 Overview
The Presentation-Abstraction-Control architectural pattern (PAC) defines a structure for interactive wireless
systems in the form of a hierarchy of cooperating agents.

4.1.9.2 Intent
The Presentation-Abstraction-Control architectural pattern defines a structure for interactive wireless
systems in the form of a hierarchy of co-operating agents [7]. Every agent is responsible for a specific

Architecture Handbook

Deliverable ID: D4 (Part D)

Page : 40 of 77

Version: 1.06
Date: 20 May 04

Status :Proposal
Confid. : Restricted

 Copyright WISE Consortium

aspect of the application’s functionality and consists of three components: presentation, abstraction, and
control. This subdivision separates the human-wireless device interaction aspects of the agent from its
functional core and its communication with other agents. PAC supports modifiability and scalability [4].

4.1.9.3 Conceptual structure
In Figure 11 it is presented the internal structure of a PAC agent.

PresentationAbstraction Control

View Coordinator

Figure 23. Internal structure of a PAC agent.

The presentation of an agent provides the visible behavior of the PAC agent. Its abstraction component
maintains the data model that underlies the agent and provides functionality that operates on this data. Its
control component connects the presentation and abstraction components and provides functionality that
allows the agent to communicate with other PAC agents. Consequences

The PAC architectural pattern has several benefits:

• Separation of concerns. Separate agents represent different semantic concepts in the application
domain.

• Support for change and extension
• Support for multi-tasking
• When the principle of separation of responsibilities is consequently employed the resulting systems

can be easily adjusted and extended
• Agents are reusable and portable
• Agents my be distributed on different host/processors
• Multiple user support possible when synchronized

The disadvantages of the PAC architectural pattern are:

• Increased system complexity
• Complex control component. The individual roles of control components should be strongly

separated from each other to guarantee a good quality for the system.
• Efficiency. The overhead in the communication between PAC agents may impact the system

efficiency.
• Applicability. The smaller the atomic semantic concepts of an application are, and the greater the

similarity of the user interfaces in wireless devices, the less applicable this pattern is.
• Communication and permanent data transfers reduce system performance

4.1.9.4 Known uses
• Network traffic management
• Mobile Robot
• Reconfigurable systems

Architecture Handbook

Deliverable ID: D4 (Part D)

Page : 41 of 77

Version: 1.06
Date: 20 May 04

Status :Proposal
Confid. : Restricted

 Copyright WISE Consortium

4.1.9.5 See also
The Model-View-Controller pattern separates the functional core of a software system from information
display and user input handling. MVC however defines its controller as an entity responsible for accepting
and translating it into internal semantics. This means that MVC divides the user-accessible part into view
and control.

4.2 WIRELESS-SPECIFIC PATTERNS

Several issues (see section 1.1) in the context of wireless service engineering are specific of this context.
The idea is to collect a set of wireless specific patterns that address such issues. This attempt is similar to
that presented in [59].

4.2.1 Reduced Mark-up Language

4.2.1.1 Overview
The problem of presenting complex structured information on a limited device can be solved using an ad-
hoc mark-up language such as WML, which requires a small footprint browser.

4.2.1.2 Intent
The reduced mark-up language addresses the problem of representing fairly complex information on a
device with limited capabilities. The limitations that are addressed consists essentially

• limited display capabilities,
• limited device resources usable for presentation software,
• missing development effort for the implementation of an ad-hoc presentation software.

Since several recent mobile devices come in bundle with WML browsers, it is possible to leverage this built-
in capability to implement all the presentation related features on the client side.

4.2.1.3 Conceptual structure

Adopt a simplified mark-up language such as WML to encode documents
WML is standard on most mobiles, therefore this is the solution of choice

Architecture Handbook

Deliverable ID: D4 (Part D)

Page : 42 of 77

Version: 1.06
Date: 20 May 04

Status :Proposal
Confid. : Restricted

 Copyright WISE Consortium

<<Domain>> End User Applications

<<Domain>> Generic Platform Services

Service

WML
Browser

User
Service

Mobile
Service

User

<<Uses>>

<<Uses>>

Figure 24. Conceptual structure of the reduce mark-up language pattern.

4.2.1.4 Consequences
The presentation can be formatted even though to a limited extent.
The browser is fairly standardized and requires reduced power and graphics capabilities.

4.2.1.5 Known uses
Several public-access web portals developed stripped down versions for mobile phones using WML.

4.2.1.6 See also

4.2.2 Connection-less protocols

4.2.2.1 Overview
When a client needs a frequent and low latency notification of events from a server on a wireless network,
the use of TCP/IP may not meet the latency requirements.
Solution consists in adopting the UDP/IP protocol and introducing some packet loss detection and recovery
mechanism at a higher level.

4.2.2.2 Intent
This pattern has the purpose of limiting the bandwidth occupation of the protocol to obtain low latency.

4.2.2.3 Conceptual structure

To reduce bandwidth, we define an application specific protocol that is based on UDP.
UDP reduces significantly the overhead of establishing a connection with respect to TCP and protocols
based on it, such as HTTP.

Architecture Handbook

Deliverable ID: D4 (Part D)

Page : 43 of 77

Version: 1.06
Date: 20 May 04

Status :Proposal
Confid. : Restricted

 Copyright WISE Consortium

4.2.2.4 Consequences

The UDP allows a lower overhead and bandwidth occupation, therefore allows notification of events with
very low latency.
On the other side UDP does not guarantee the delivery of packets. Therefore the application must be able
to handle missing informations.

4.2.2.5 Known uses
WISE Pilot 2, in its first iteration, uses this pattern to cope with the limited bandwidth of GPRS network.

4.2.2.6 See also

4.2.3 Multiple presentations

4.2.3.1 Overview
In a network environment, especially with wireless devices, the characteristics of client applications often
are very different. It is very useful to provide the users with a single point of access to a service and
automatically adapt to the client/device features.

4.2.3.2 Intent
We need access to the same information through different media and devices. As the user changes device
he/she must be offered the same service according to the devices capabilities.
In general the same service must be presented through different channels. But in practice each device has
different capabilities and the details of the presentation that can depend heavily on the device or client
application capabilities.
This pattern provides a method to automatically detect the type of device/client and switch to the
presentation mode that best suits it.

4.2.3.3 Conceptual structure

Add a presentation layer for each specific device and let it select the features that can be show on the
device and organize the contents in the most suitable way.
All the versions of the user interface are based on the same back-end component; they only adapt the
information in the back-end to specific languages/devices.
In addition we need an entry point that can redirect the user to the most suitable presentation on the base of
the user’s device capabilities.

As an example using JSP to provide access to devices using different languages would yield the following
structure:

Architecture Handbook

Deliverable ID: D4 (Part D)

Page : 44 of 77

Version: 1.06
Date: 20 May 04

Status :Proposal
Confid. : Restricted

 Copyright WISE Consortium

«jsp»
Accept

«jsp»
HTML_Version

«jsp»
WML_Version

«jsp»
XHTML_Version

«redirect»�
«redirect»�
«redirect»� BackEnd

Figure 16.25: Multiple presentations..

The Accept JSP is the target for the connection for all the types of browsers, it identifies the type of browser
and redirects it to the version of the presentation most appropriate for that browser.
The presentation versions are thin and focus only on the presentation language and on the level of detail.
The back-end component hides all the complexities and provides a unique source of information for all the
channels.

4.2.3.4 Consequences
The same information is at the base of all the presentations
Each version of the presentation is tailored for a specific device
Each version can filter the information and provide the suitable level of detail

4.2.3.5 Known uses
This approach is used in several web portals to recognize the browser and use the suitable extension. This
works essentially to distinguish between Netscape and Microsoft browsers.
The same approach is used to identify the type of mobile device that connects to a WAP server. This
distinction is very important because the support for WML is not uniform across different devices. In this
case it is possible to adapt the WML to the devices that connect to the service.

4.2.3.6 See also

It could be used together with the MVC pattern: the multiple presentation serves the purpose of selecting
the view most appropriate for the client.

Architecture Handbook

Deliverable ID: D4 (Part D)

Page : 45 of 77

Version: 1.06
Date: 20 May 04

Status :Proposal
Confid. : Restricted

 Copyright WISE Consortium

5. WISA BASIC SERVICES

The WISA basic services presented in the following section are structured by the service taxonomy selected
to WISA/RA. A basic service belongs to one of the taxonomy domains. End-user services will not be
included into WISA basic services. Technology platform services are not described equally to the other
basic services but only their selection criteria have been presented.

Because it is impossible to present all basic services in a single architectural model or diagram each basic
service is presented according to the documentation pattern described in D4 Part B.

This section introduces a set of basic services suitable for wireless services and known so far. Application
support services that now provide only two services for game entertainment will be supplemented in the next
iteration phase with supporting services and application frameworks useful in future wireless services, e.g
m-health services. Also location based services need further studies.

Although some kinds of solutions for generic platform services have already identified, they need to adapted
to heterogeneous environments, e.g. mobile terminals and PDAs, and extend with variability inside the
services, and furthermore, validate their usefulness in the wireless services.

5.1 APPLICATION DOMAIN SUPPORT SERVICES

5.1.1 3D Game Engine (X-Forge Technology)

Identification:
The X-Forge™ 3D Game Engine is a complete C++ based cross-platform game engine and suite of tools for
developing advanced 3D games for major mobile platforms.

Source:
This service is commercially available from Fathammer (http://www.fathammer.com).

Special terms and rules:

Quality attributes:

Table 8. Quality requirements and theirs intended realization.

Requirement Definition Realization
Performance Processing power in the target devices is very

limited.
Code is as carefully optimized as
possible.

Portability Game engine must be portable into the several
operating environments.

Hardware depended parts of the
platform are separated from the
generic part with an abstraction
layer.

Features:
Graphics Support
 2D
 3D
 Hardware accelerated

Architecture Handbook

Deliverable ID: D4 (Part D)

Page : 46 of 77

Version: 1.06
Date: 20 May 04

Status :Proposal
Confid. : Restricted

 Copyright WISE Consortium

 Software accelerated
Network Support
 Bluetooth
 WLAN
 3G
Operating System
 Symbian OS
 Microsoft Smartphone
 Microsoft Pocket PC
 Palm OS
 Mobile Linux

Conceptual structure:

<<Service>>
Game Framework

<<Service>> 3D
World System

<<Service>>
Collision Engine

<<Service>>
Physics Engine

<<Service>>
Game UI Toolkit

<<Service>>
Multiplayer
Framework

<<Service>>
Particle System

<<Service>>
Application
Framework

<<Service>>
Graphics Library

<<Service>> Audio
Library

<<Service>> Input
& Event Library

<<Service>>
File I/O Library

<<Service>>
Resource

Management

<<Service>>
Memory

Management

<<Service>>
Network Library

<<Service>>
Vibration Library

<<Service>>
Device Detection

<<Service>>
Symbian OS

<<Service>>
Microsoft

Smartphone

<<Service>>
Microsoft Pocket

PC
<<Service>>

Palm OS
<<Service>>
Mobile Linux

<<Domain>> Technology Platform Services

<<Domain>> Generic Platform Services

<<Domain>> Gaming Support Services

<<Uses>>

<<Uses>>

<<Domain>> 3D Game Engine

<<Domain>> Human Interaction<<Domain>> Resource Management

<<Domain>>
Communcation

Services

<<Domain>> Work/
Task Services

Figure 26. 3G game engine and related services of other domains.

Conceptual deployment of a service:

Architecture Handbook

Deliverable ID: D4 (Part D)

Page : 47 of 77

Version: 1.06
Date: 20 May 04

Status :Proposal
Confid. : Restricted

 Copyright WISE Consortium

 Terminal

<<Service>>
3D Game Engine

<<Service>>
Symbian

<<Service>>
Game

Figure 27. An example deployment of the 3G game engine.

External component diagram of the service:

Provided interfaces:

5.1.2 Game GUI library

Identification: A GUI library that extends J2ME functionality for gaming support domain.

Source:
Motorola, the concept with basic realization has been designed for WISE Pilot 2.
Java class path: com.motorola.microedition.ui.*

Overview:
This Java library provides a basic set of components to be used in J2ME-enabled heterogeneous clients in
order to build generic menu-driven parameters settings.

Special terms and rules:
Due to its graphical approach, it’s not suitable for device with very small screens (one or two line of text)
where a text-based interface should be provided.

Features:
N/A

Conceptual structure

The library provides a basic framework for End-user input and display of values in a menu-driven context.
For values we intend numbers, strings or a generic choice among, for example, pictures. Classes can easily
be extended for application-specific attributes.

Architecture Handbook

Deliverable ID: D4 (Part D)

Page : 48 of 77

Version: 1.06
Date: 20 May 04

Status :Proposal
Confid. : Restricted

 Copyright WISE Consortium

<<Domain>>
Application Domain Support Services

<<Domain>> Techology Platforms

<<Service
Game GUI Library

<<Service>>
J2ME

<<Uses>>

<<Service>>
Nested Window
Menu Support

<<Service>>
Parameter Value

Input Support

<<Application>>
Mobile Game

<<Uses>>

Figure 28: Conceptual structure of Game GUI Library

Conceptual Deployment

Game GUI is deployed in mobile terminal side.

External component diagram of the service:

<<Service>> Game
GUI Library

 WindowMenu

 Input Components

Figure 29. External interfaces of Game GUI Library.

Provided Interfaces
Windowmenu is a Java class that extends Java Canvas class with methods:

setAccept and setCancel, which provide the way out of the menu. Both require as parameters a
displayable class and the display of the application.
goAccept and goCancel methods force the menu to close.
add method is called anytime a new component has to be added to the menu
The component added to menu must provide an Appendable Java interface

paint
keyPressed
pointerPressed
isMenu

Other methods are related to user interaction and are common Canvas methods of Java.
InputComponents is a set of Java components to handle

Adaptable input of parameter values in a range
Select picture among picture group
Get password etc. in an edit box.

Architecture Handbook

Deliverable ID: D4 (Part D)

Page : 49 of 77

Version: 1.06
Date: 20 May 04

Status :Proposal
Confid. : Restricted

 Copyright WISE Consortium

5.1.3 Game Engine
TBD in iteration 3.

5.1.4 Location based services (Polos platform)
TBD in iteration 3.

5.1.5 Geographic services (GIS)
TBD in iteration 3.

5.2 GENERIC PLATFORM SERVICES

5.2.1 Negotiation protocol
TBD in iteration 3 (from Wise task 2.3 Agents).

Architecture Handbook
Deliverable ID: D4 (Part D)

Page : 50 of 77

Version: 1.06
Date: 20 May 04

Status :Proposal
Confid. : Restricted

 Copyright WISE Consortium

5.2.2 Heterogeneous User Interface Service

Identification: Heterogeneous User Interface Service (HUS) belongs to the generic platform services.

Source: VTT, the concept with realization (made for the remote control of home appliances in
 ITEA/VHE project). Here HUS is adapted to the Wise context by replacing the OSGi server
 with the Wise Transport Service.

Overview:

HUS provides a generic mechanism to transform the presentation of a wireless service. The capabilities of
wireless services and used terminals are described in the XML based UIML (User Interface Markup
Language). HUS adapts (using the generic configuration service) the user interface of an application
service to the format required by the user's preferences, the terminal capabilities and the features provided
by the application.

Special terms and rules: HUS applies the broker pattern and has been implemented by Java.

Quality attributes:

The quality requirements set to HUS and how these requirements are intended to be met are defined in
Table 9.

Table 9. Quality requirements and their intended realization.

Quality
requirement

Description Realization

Portability • HUS can be used with different kinds of
technology platforms (i.e. lower level
protocols, implementation languages,
operating systems etc.)

• HUS uses the technology platform
services through proxies that need to
be redeveloped if the technology
platform is changed.

Modifiability • The use of new types of applications and
terminals requires a minimal work if any.

• The transcoders and the feature
descriptions of applications can be
updated.

Extendibility • New terminal types can be added to the
wireless network.

• A new type of application service could
register and use the terminals available
in the network.

• Easily linked by using UIML
descriptions, transcoders and the
configuration service.

Reusability • HUS can be applied to any kind of
application through a particular service
interface.

• HUS provides a generic interface to
the wireless service to be connected
to the system.

• HUS requires that all application
services are designed according to
the used pattern.

Features:
UIML_Service (the core of the broker):
• Communicates with

1) applications through the Wise Transport Service,
2) transcoders internally through specified interfaces, and

Architecture Handbook

Deliverable ID: D4 (Part D)

Page : 51 of 77

Version: 1.06
Date: 20 May 04

Status :Proposal
Confid. : Restricted

 Copyright WISE Consortium

3) client devices through an external HTTP Server.
• Co-ordinates the necessary transcoding process by exploiting the capabilities of UIML_Transcoders.

UIML transcoders
• provide resources for UIML_Service, including one or more transcoders (that transform data from UIML

to the destination languages),
• can be updated and new ones can be added, and
• use the configuration service.

Applications must
• register themselves as services,
• implement the UIML_Application_Interface, and
• provide identification information of each application.

• Configurable features:

- user preferences
- user interface (browser) capabilities

Capabilities of browsers:
• most typical HTML and VXML browsers used by client proxies to recognize client formats.

Current implementation uses an HTTP server in communication between browsers and UIML_Service.

Wise Transmit Service provides message and event based communication between application services
and HUS.

Conceptual structure:

Figure 30 presents the conceptual structure of the HUS service.

<<Service>> Heterogeneous_User_Interface_Service

 Client_Proxies Application_Service_Proxies

<<Service>>
UIML_Transcoders<<Service>>

UIML_Service

uses

Uses

<<Service>> Browsers

<<Service>>
Configuration_Serviceuses

<<Service>>
Wise_Transport_Service

<<Service>>
HTTP_Server

<<Service>>
Application_Servers

uses

Architecture Handbook

Deliverable ID: D4 (Part D)

Page : 52 of 77

Version: 1.06
Date: 20 May 04

Status :Proposal
Confid. : Restricted

 Copyright WISE Consortium

Figure 30. Conceptual structure of HUS.

Table 10. Responsibilities of the HUS components.

Component Responsibilities

HUS Provides a uniform communication channel between any kind of user interface and
applications.

Self-configures operation according to the used terminal and the capabilities of the
application service.

UIML_Service The broker that mediates messages and controls the transformation process.

UIML_Transcoder Transforms the format of an application to the form of the terminal browser.

Client_Proxy Separates messaging from connections between the broker and clients. A
connection point for a client.

Application_Servic
e_Proxy

Represents an application service to the broker providing a link to the definition of
the application UI.

Conceptual deployment:

The HUS service can be deployed in several ways. Figure 31 shows one deployment of the HUS service to
a wireless service environment separating applications and generic platform services to different nodes.

HTTP

Mobile Terminals

Application Servers

<<Application>> Browser <<Service>>
Application_Services

<<Service>>
Wise_Transport_Service

UI_Broker_Server

UDP

<<Service>>
Configuration_

Service

<<Service>>
UIML_Service

<<Service>>
UIML_Transcoders

<<Service>>
Wise_Transport_

Service

UDP

<<Service>>
HTTP_Server

<<Service>>
Wise_Transport_Service

 Client_Proxy App_Service_Proxies

Architecture Handbook

Deliverable ID: D4 (Part D)

Page : 53 of 77

Version: 1.06
Date: 20 May 04

Status :Proposal
Confid. : Restricted

 Copyright WISE Consortium

Figure 31. An example deployment of the HUS service.

External component diagram:

Figure 32. External interfaces of HUS.

Provided interfaces:

UIML_Service_Interface provided by UIML_Service.
• Push_UI_Description
• Acquire_Value

UIML_Transcoder_Interface provided by each transcoder.

Required interfaces:

UIML_Application_Interface provided by each application:
• Retrieve_UI_Description
• Request_Value
• Invoke_Method
• Enable/Disable_Push_Service

HTTP_Server_Interface (HTTP_GET):
• UI_Homepage
• Application_List
• UI_Action

Wise Transport Service is used to connect applications to the UIML_Service and Configuration Service.

5.2.3 Wise Transport service
Identification:
Wise Transport Service (WTS) provides generic message-based communication service, supporting both
synchronous and asynchronous modes. It is based on UDP Service.

Source:
Motorola and Sodalia, developed in Wise.

Special terms and rules:
Wise Transport Service utilizes the client-server architecture style.

 UIML_Application_Interface

<<Service>> HUS

 UIML_Service_Interface

 UIML_Transcoder_Interface HTTP_Server_Interface

Architecture Handbook
Deliverable ID: D4 (Part D)

Page : 54 of 77

Version: 1.06
Date: 20 May 04

Status :Proposal
Confid. : Restricted

 Copyright WISE Consortium

Quality attributes:

Requirement Definition Realization
Efficiency Wise Transport service should provide message

transport in close to real-time.
UDP provides better efficiency than
TCP. (Estimated less than ¼ Round
trip time)

Scalability The client side of the service should fit (in size) into
the mobile terminal.

The client side functionality is kept
as simple as possible.

Features:
Communication
 Synchronous
 Asynchronous
 Reliable
 Unreliable

// Synchronous/asynchronous concepts are strictly related to reliable/unreliable packets.
Communication Protocol
 UDP
Operating Environment
 J2ME
 J2EE

Conceptual structure:

<<Domain>>
Application Domain Support Services

<<Domain>> Techology Platforms

<<Uses>>

<<Domain>>
WISE Message Transport

<<Service>>
UDP Protocol

<<Service>>
J2ME

<<Uses>>

<<Service>>
J2EE

<<Uses>>

<<Service>>
Client Side of WTS

<<Service>>
Server Side of

WTS

<<Service>>
Motorola Server
Side Transfer

Package

Figure 33. The conceptual structure of WTS.

Conceptual deployment:

Architecture Handbook

Deliverable ID: D4 (Part D)

Page : 55 of 77

Version: 1.06
Date: 20 May 04

Status :Proposal
Confid. : Restricted

 Copyright WISE Consortium

 Terminal

<<Service>>
UDP Protocol

<<Service>>
J2ME

 Server

<<Service>>
UDP Protocol

<<Service>>
J2EE

<<Service>>
Client Side of WTS

<<Service>>
Server Side of

WTS

<<Service>>
Motorola Server
Side Transfer

Package

Figure 34. An example deployment of WTS.

External component diagram of the service:

 WISE Transport
Service

 ClientComm_ITF

 CommReq_ITF

 UDP

Figure 35. External interfaces of WTS.

Provided interfaces:
ClientComm_ITF
 Send
 SendReliable
 Receive

hasMoreData
Stop

CommReq_ITF
 ..
Required interfaces:
UDP
 .

5.2.4 Multimedia streaming service (MMS)

Identification:
The multimedia service is capable of streaming multimedia (e.g. video and/or sound) bi-directionally
between two terminals.

Source:
The service has been introduced in [54]. The service is commercially available from Hantro
(http://www.hantro.com).

Architecture Handbook

Deliverable ID: D4 (Part D)

Page : 56 of 77

Version: 1.06
Date: 20 May 04

Status :Proposal
Confid. : Restricted

 Copyright WISE Consortium

Special terms and rules:
Multimedia streaming service utilizes blackboard architecture style and layered style.

Quality attributes:

Requirement Definition Realization
Modifiability Easy and flexible adding (e.g. QoS protocols) and

modification of the features should be considered.
• Selected architecture style

(blackboard) allows easy
modifications and additions.

Integrability The platform is intended to be part of a wider
multimedia platform rather than a stand-alone
application. Thus major emphasis should be placed
on the ease of integrating the platform into the
existing products.

• This requirement is notified in
the interface design.

Portability The platform should be easy to port to different
operating environments.

• Platform depended code is
isolated with compiler flags.

Features:
Multimedia streaming
 Sending
 Receiving
Signaling Protocol
 SIP
 Calls via proxy
 Direct Calls
Transfer Protocol
 RTP
Stream Control Protocol
 RTSP
Programming Language
 C
Communication protocol
 TCP Sockets
 UDP Sockets
Operating System
 WinCE
 Windows
 Epoc

Conceptual structure:

Architecture Handbook

Deliverable ID: D4 (Part D)

Page : 57 of 77

Version: 1.06
Date: 20 May 04

Status :Proposal
Confid. : Restricted

 Copyright WISE Consortium

<<Component>> Streamer

<<Service>>
UDP Socket

<<Service>>
TCP Socket

<<Service>> Streaming

<<Component>>
SDP (RFC 2327)

<<Component>>
RTSP (RFC2326)

<<Domain>> End User Applications

<<Component>>
RTP (RFC 1889)

<<Domain>> Techology Platforms

<<Component>>
SIP (RFC 2543)

<<Component>>
NetManager

<<Service>>
Media Codecs

Figure 36. Conceptual structure of MMS.

Table 11. Responsibilities of the elements of MMS.

Component Responsibilities

Streamer Streamer component controls the Streaming service. It handles interaction with
the upper and lower level services or corresponds the data repository in the
blackboard architecture style.

RTSP Implements RTSP-protocol (Real-time Streaming Protocol ; IETF RFC 2326).
RTSP provides session control for RTP streams.

SIP Implements SIP-protocol (Session Initiation Protocol ; IETF RFC 2543). SIP is a
signaling protocol for creating, modifying and termination sessions i.e. calls
between one or more participants.

RTP Implements RTP-protocol (Real-time Protocol ; IETF RFC 1889). RTP provides
end-to-end network transport function suitable for applications transmitting real-
time data.

NetManager Provides an interface to the network.

SDP Dummy implementation of SDP protocol (Session Description Protocol ; IETF
RFC 2327). SDP is used to describe media types and parameters used in RTP

Architecture Handbook

Deliverable ID: D4 (Part D)

Page : 58 of 77

Version: 1.06
Date: 20 May 04

Status :Proposal
Confid. : Restricted

 Copyright WISE Consortium

streams.

Conceptual deployment:

 Terminal

<<Service>> GUI

<<Service>>
Streaming

<<Service>> NET

UDP & TCP

<<Service>>
Media Codecs

 Terminal

<<Service>> GUI

<<Service>>
Streaming

<<Service>> NET

<<Service>>
Media Codecs

Figure 37. An example deployment of MMS.

External component diagram:

 Streaming

 Data

 Control

Figure 38. External interfaces of MMS.

Provided interfaces:
Control
 Initialize
 Start stream
 Stop stream

Required interfaces:
Net
 UDP Socket Interface
 TCP Socket Interface
Codec
 Encode data
 Decode data

5.2.5 Instant Messaging & Presence Service

Identification:

Architecture Handbook

Deliverable ID: D4 (Part D)

Page : 59 of 77

Version: 1.06
Date: 20 May 04

Status :Proposal
Confid. : Restricted

 Copyright WISE Consortium

Purpose of this service is to provide instant messaging and presence service (IM/P) for the applications.
Instant messaging is transferring messages between users in near real-time. The messages are usually, but
not required to be, short media messages, preferably text. The Presence service is defined as a
subscription to and notification of changes in the communication state of a user.

Source:
The service has been introduced in [54]. This service is commercially available from Creanor
(http://www.creanor.com).

Special terms and rules:
IM/P service utilizes blackboard architecture style and layered style.

Quality attributes:

Table 12.Quality requirements and their intended realizations.

Requirement Definition Realization
Modifiability • Architecture should enable the flexible

integration of new instant messaging
protocols.

• The interface between the service platform
and GUI is not fixed to any implementation
technique.

• Architecture should support both the two
presence server location types: local and
remote Presence Agents (PAs).

• Addition of new protocols has
been notified in the design of
provided interfaces and in the
implementation of the generic
components.

Integrability • The platform is intended to be usable in
stand-alone application as well as a part of
a wider multimedia platform.

• The requirement has been notified
in the interface design.

Portability • Platform should be easy to port to different
operating environments, graphical user
interfaces or network implementations.

• Platform depended code is
isolated with compiler flags.

Features:
Presence Protocol
 SIMPLE
 Local Presence Agent
 Remote Presence Agent
 Wireless Village (currently not implemented)
Messaging Protocol
 SIMPLE
 Messages via Proxy
 Direct messages
 Wireless Village (currently not implemented)
Programming Language
 C
Communication protocol
 UDP Sockets
Operating System
 Windows
 Linux

Conceptual structure:

Architecture Handbook

Deliverable ID: D4 (Part D)

Page : 60 of 77

Version: 1.06
Date: 20 May 04

Status :Proposal
Confid. : Restricted

 Copyright WISE Consortium

<<Domain>> End User Applications

<<Service>> IM/P

<<Domain>> Techology Platforms

<<Component>>
IMManager

<<Component>>
IMInterfaceManager

<<Component>>
NetManager

<<Component>>
IM/P Protocol

<<Component>>
IM/P Interface

<<Component>>
PresenceManager

<<Component>>
MessagingManager

<<Service>> UDP

Figure 39. Conceptual structure of IM/P.

Table 13. Responsibilities of IM/P components.

Component1 Responsibilities

IM/P Interface Variable component that provides interface between IM domain and the GUI.
Interface may be realized with C library or OS-Messaging.

IMInterfaceManager Provides to the IM domain generic interface, which is used by specified IM/P
interface component.

IMManager Controller part of the IM domain. Is responsible to construct the system, control
network connections, receive requests from the user and control the protocol
components.

NetManager Provides an interface to the network.

IM/P Protocol Variable component which provides instant messaging and presence
functionality. Protocol may either be SIP or WV.

PresenceManager Variable component inside IM/P component, that provides control for presence.
Functionality depends on the selected protocol (SIP/WV).

1 Variable components are marked with gray background.

Architecture Handbook

Deliverable ID: D4 (Part D)

Page : 61 of 77

Version: 1.06
Date: 20 May 04

Status :Proposal
Confid. : Restricted

 Copyright WISE Consortium

Functionality depends on the selected protocol (SIP/WV).

MessagingManager Variable component inside IM/P component, that provides control for
messaging. Functionality depends on the selected protocol (SIP/WV).

Conceptual deployment:

 Terminal

<<Service>> GUI

<<Service>> IM/P

<<Service>> UDP

 Terminal

<<Service>> GUI

<<Service>> IM/P

<<Service>> UDP

UDP

Figure 40. Conceptual deployment of IM/P.

External component diagram:

 IM/P

 Messaging

 Presence Application

Figure 41. External interfaces of IM/P.

Provided interfaces:
Messaging:
 Send Message
Presence:
 Subscribe buddy
 Cancel subscription
 Notify

Required interfaces:
Net:
 UDP Socket Interface
Application:
 Handle incoming message
 Handle incoming notification

5.2.6 Configuration Service
Identification:

Architecture Handbook

Deliverable ID: D4 (Part D)

Page : 62 of 77

Version: 1.06
Date: 20 May 04

Status :Proposal
Confid. : Restricted

 Copyright WISE Consortium

Configuration service (CS)is used to configure the other services according to the feature models about the
service, the user choices and the environment features.

Source: VTT.

Special terms and rules:

Quality attributes:

Table 14. Quality requirements and their intended realization.

Requirement Definition Realization
Usability The interface has to be a simple enough. Feature

model and profile information has to be in human-
readable format.

The interface two abstraction levels
– high level for users and low level
for developers.

Scalability The client side of the service should fit (in size) into
the mobile terminal.

The client side functionality is kept
as simple as possible.

Features:
Feature Model
 Local
 In the Network

Format
 Custom
 RDF

Profile Information
 Local
 In the Network
 Format
 Custom

RDF

Conceptual structure:

Architecture Handbook

Deliverable ID: D4 (Part D)

Page : 63 of 77

Version: 1.06
Date: 20 May 04

Status :Proposal
Confid. : Restricted

 Copyright WISE Consortium

<<Component>>
Feature Model

Mapper

<<Domain>>
Feature Based
Configurators

<<Service>> Contex Aware Service

<<Service>>
Mobile Device

UE Profiles

<<Service>>
Server Profiles

<<Component>>
Profile-

FeatureModel
conversion

<<Component>>
Service Context

Aquisition

<<Service>>
User Profile

Management

<<Service>> Generic Configuration Service

<<Domain>> Service Management

Uses

Uses

Uses

<<Service>>
Service

Provisioning

Service Developer

Service User

<<Component>>
Feature Model
Management

Uses

Uses

Uses

Uses

Uses

<<Component>>
Service

Configurator

Figure 42. Conceptual structure of CS.

Architecture Handbook
Deliverable ID: D4 (Part D)

Page : 64 of 77

Version: 01.09
Date: 20 May 04

Status :Proposal
Confid. : Restricted

 Copyright WISE Consortium

Table 15. Responsibilities of the CS components.

Component Responsibilities

Context Aware Service Any service that should adapt to context requirements
 Service Configurator Component of a service that is responsible for configuration/adaptation of

it
Service Management Domain responsible of various management functions related to wireless

services
 Generic Configuration
Service

Provides an interface to generic feature based configuration service for
context aware services (configuration of sub-services?)

 Feature Model
Management

Provides services needed to create feature models and provides storage
facilities for them

 Feature Based
Configurator

A configurator service that takes a set of feature selections as input and
produces specific configuration information as output. The configurator
could use:
1. Mapping of a set of feature selections into set of service specific

features based on a set of rules (uses feature selection service).
2. Provides a set of default features based on the feature model and

adds them to feature selections
3. Modification of service metamodel based on a set of features to be

used by reflection pattern
4. Generation of a part of service based on the set of features.
5. ...

 Feature Selection Provides an interface for selecting features of a feature model.
Checks that a set of selections is valid against the restrictions set by the
feature model.

 Service Context Acquisition Provides an interface for accessing context information from various
sources in a standard way

 Profile-Feature Conversion Converts profile information from various sources into feature selections
and vice-versa

 Service Provisioning Service downloading and subscription etc..
 User Profile Management Stores service user profiles and provides an interface for accessing them.
 Mobile Device UE Profiles Stores profile information about various mobile devices.
 Server Profiles Stores profile information about servers that run wireless services and

provides interface for accessing the information

Conceptual deployment:

 Terminal

<<Service>>
Configurable

Service

<<Service>>
Service

Configurator

Figure 43. An example deployment of CS.

Architecture Handbook
Deliverable ID: D4 (Part D)

Page : 65 of 77

Version: 01.09
Date: 20 May 04

Status : Proposal
Confid. : Restricted

 Copyright WISE Consortium

External component diagram:

 Service
Configurator

 Data

 Control

Figure 44. External interfaces of CS.

Provided interfaces:
Data:
 Initialize feature models
 Initialize profiles
Control:
 Configure

Required interfaces:

5.2.7 Data Management Component

Identification: Provides wireless data management services in WISA generic support services domain.

Source:

Contains COTS database component by Solid.

Overview:

Data management component provides basic data storage, transfer, synchronization and management
services for wireless services and its management services. A wireless service adapts the data
management component for its purposes using standard database interfaces and defining publications and
procedures for data synchronization.

Special terms and rules:

TBD in iteration 2.

Quality attributes:

The quality requirements set to DMC and how these requirements are intended to be met, are defined in
Table 16 (TBD in iteration 2).

Table 16. Quality requirements and their intended realization.

Quality
requirement

Description Realization

Portability
Modifiability
Extendibility
Reusability

Architecture Handbook
Deliverable ID: D4 (Part D)

Page : 66 of 77

Version: 01.09
Date: 20 May 04

Status : Proposal
Confid. : Restricted

 Copyright WISE Consortium

Features:
Operating Systems
Conceptual structure:

<<Service>> Data Management Component

<<Service>> Wireless Data
Service

<<Service>> Wireless
Data Transfer and
Synchronisation

<<Domain>> Technology Plaform Services

<<Uses>>

<<Uses>>

<<Service>> Data
Access

Management

<<Domain>> Service
Managemement

<<Service>>
Wireless Data

Storage

<<Category>>
Wireless Transfer

Protocols

<<Service>> Web
Server

<<Category>>
Operating

Environments

<<Uses>>

<<Service>> General Support Services

<<Uses>>

<<Category>>
Database

Management
Interfaces

Figure 45. Conceptual Structure of DMC.

Table 17. Conceptual Elements of Data Management Component.

Conceptual Element Description
Wireless Data Storage Provides a data definition, storage and access service for both local and

networked data.
Data Transfer and
Synchronization

Provides service to define transferring and replication data between local
and networked data storage for wireless systems.

Data Access Management Provides database access management services

Conceptual deployment:
N/A

External component diagram:
N/A

Architecture Handbook
Deliverable ID: D4 (Part D)

Page : 67 of 77

Version: 01.09
Date: 20 May 04

Status : Proposal
Confid. : Restricted

 Copyright WISE Consortium

Provided interfaces:
 API: (SQL, ODBC and JDBC)

Service defines database tables and Procedures and Publications for data transfer and
synchronization using the API

5.3 TECHNOLOGY PLATFORM SERVICES

5.3.1 WAP

Identification: A specification in Software Environments domain for wireless services.

Source:

http:\\www.openmobilealliance.org

Overview:

The Wireless Application Protocol (WAP) is a result of continuous work to define an industry wide
specification for developing applications that operate over wireless communication networks. The WAP
programming model is the WWW programming model with a few enhancements.

5.3.2 J2SE
Identification: A standard in Software Environments domain for wireless services.

Source:

http://java.sun.com/j2se/

Overview:

Java ™ 2 Platform, Standard Edition is the standard platform for Java ™ 2.

5.3.3 J2EE
Identification: A standard in Software Environments domain for wireless services, server side.

Source:

http://java.sun.com/j2ee/

Overview:

The Java™ 2 Platform, Enterprise Edition (J2EE) defines the standard for developing multitier enterprise
applications. Compared to J2SE, Enterprise Edition adds full support for Enterprise JavaBeans™ (EJB)
components, Java Servlets API, JavaServer Pages™ (JSP) and XML technology.

5.3.4 J2ME
Identification: A standard in Software Environments domain for wireless service, mobile terminals.

Architecture Handbook
Deliverable ID: D4 (Part D)

Page : 68 of 77

Version: 01.09
Date: 20 May 04

Status : Proposal
Confid. : Restricted

 Copyright WISE Consortium

Source:

http://java.sun.com/j2me/

Overview:

Java ™ 2 Platform, Micro Edition, J2ME is an optimized Java runtime environment. Currently there are two
J2ME configurations: the Connected Limited Device Configuration (CLDC) and the Connected Device
Configuration (CDC). A configuration is comprised of a virtual machine, core libraries and APIs. CDLC is
designed for devices with constrained CPU and memory resources. CDC is designed for next-generation
devices with more robust resources.

Features:
Configuration

CLDC
CDC

5.4 SERVICE MANAGEMENT SERVICES

5.4.1 Service Management Component (SMC)

Identification: Provides several services in WISA Service Management domain.

Source:

Contains COTS components by Sodalia and components, facades and clients developed in WISE.

Overview:

The Service Management Component (SMC) is a provider of service management services to accomplish a
common set of operations required in providing a service. The future development of service management
component in Wise will concentrate on:
• Additional wireless specific services such as Location Services, etc.
• The Service Management Proxy, which is the value-adding component of WISA for service

management. Due to its easy-to-use interface, it allows for rapid development of a service application
hiding all the details related to the Service Management domain.

• Stardard interfaces [e.g. OSS through Java] used by the Service Management Proxy to access the real
services

• Service Management Products that could be integrated with the Service Management Proxy

Special terms and rules:

SMC is a separate service management server with façade interface provided to the application servers.
WAP and HTML interfaces are provided for end-user and administrator operations.

Client-Server and Proxy and Facade patterns are used to integrate the COTS components that reside in the
service management server to WISA.

Quality attributes:

Architecture Handbook
Deliverable ID: D4 (Part D)

Page : 69 of 77

Version: 01.09
Date: 20 May 04

Status : Proposal
Confid. : Restricted

 Copyright WISE Consortium

The quality requirements set to SMC and how these requirements are intended to be met, are defined in
Table 18 (TBD in iteration 2).

Table 18. Quality requirements and their intended realization (TBD)

Quality
requirement

Description Realization

Portability
Modifiability
Extendibility
Reusability

Features:

Technology for service subscription interface:
 WAP
 HTML

Conceptual structure:

Figure 46 presents the conceptual structure of the SMC component. The descriptions of actors are in Table
1 and the responsibilities of conceptual elements in Table 2.

Architecture Handbook
Deliverable ID: D4 (Part D)

Page : 70 of 77

Version: 01.09
Date: 20 May 04

Status : Proposal
Confid. : Restricted

 Copyright WISE Consortium

End User Service Administrator

<<Service>> A
Service (e.g.

Gaming)

<<Service>>
Authentication &

Authorisation

<<Service>> User
Profile Management

<<Service>>
Accounting

<<Category>> Accounting
and Mediation

<<Service>>
Rating

<<Service>>
Client Code
Deployment

<<Category>> Provisioning

<<Service>> Self
Subscription

<<Application>>
Billing

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»«uses»

«uses»

«uses»

«uses»

<<Category>> User
Management

«uses»

«uses»

<<Domain>> Technology Platforms

<<Service>>
WAP

<<Service>>
J2EE

«uses»

<<Service>>
Database

«uses» «uses»

<<Service>>
HTML

<<Service>>
Corba

<<Domain>> Service Management

Figure 46. Conceptual structure of SMC.

Table 19. Actors of Service Management Component.

Conceptual Element Description
End User Uses a Service

Uses the Client Code Download Service to download the client side code
implementing the service (if the service requires a thick client)
Uses the Self-Subscription Service to subscribe the service

System Administrator Performs all the tasks needed to configure, monitor and update the service.

Table 20. Responsibilities of conceptual elements.

Conceptual Element Responsibility
A Service Application
(external)

Provides a service to the end user (e.g. trading online of stocks, gaming,
etc.).
Uses Authentication Service to give access only to granted users
Uses User Profile Service to store user related data (what type of data is

Architecture Handbook
Deliverable ID: D4 (Part D)

Page : 71 of 77

Version: 01.09
Date: 20 May 04

Status : Proposal
Confid. : Restricted

 Copyright WISE Consortium

service dependant issue)
Uses Usage Data Collection for charging the user for having used the
service

Authentication Service Provides the operations to grant the access only to authorised uses
User Profile Service Provides the operations to define, store and retrieve user related data
Self Subscription Service Provides the service provider the infrastructure to offer services online and

users to subscribe online services by themselves.
Uses Authentication Service to grant the subscribed user to use the service
Uses User Profile Service to store user subscription data (e.g. credit card
data, etc.)
Uses the Service Application to notify that a user has subscribed the service

Client Code Download
Service (provided by an
external COTS)

Provides a user the ability to choose and download client code to access to a
service

Accounting Service Provides service applications the ability to log usage data to charge the user
Rating Service (provided
by an external COTS)

Provides a rule based engine to apply billing strategies to usage data
uses Authentication Service and User Profile Service to gather user
information for rating purposes

Billing Service (provided by
an external COTS, but out
of scope of WISE project)

Provides the service operator with all the features to invoice the user for
having used a service
uses the Rating Service to receive rated accounting data about the usage of
a service

Conceptual deployment:

The Mobile Device runs the WAP Browser, the client side code of the offered service and the Code
Deployment Client. The Service Server hosts the server side part of the offered service and the Accounting
Agent, which is in turn, the client side of the Accounting Service. The Management Node runs the
Authentication and Authorization Server, the User Profile Server, the Client Code Deployment Server, the
Self-Subscription Server, the Accounting Server (which is the server side of the Accounting Service) and the
Rating Server. Communication between the nodes is based on TCP/IP, further details on used protocols are
provided in the concrete architecture section.

Mobile Device Management Server

<<Application>>
WAP Browser

<<Service>> Client
Code Deployment

Server

<<Application>>
Client Code

Deployment Client

* *

End-user

*
*

<<Service>> Self
Subscription

«uses»

«uses»

Server

<<Service>>
Service Server

<<
D

at
a>

>

Architecture Handbook
Deliverable ID: D4 (Part D)

Page : 72 of 77

Version: 01.09
Date: 20 May 04

Status : Proposal
Confid. : Restricted

 Copyright WISE Consortium

Figure 47. Deployment of Provisioning Services.

Management Server

<<Service>>
Authentication
& Authorization

<<Service>>
User Profile

Management

Service Administrator

Server

Mobile
Device

End-User

**

**

<<Service>>
Service
Server

«uses»

«uses»

Figure 48. Deployment of End-user Management Services.

Server Management Server

<<Application>> A
Service Server

<<Service>>
Accounting Agent

<<Service>>
Rating

<<Service>>
Accounting Server

*
*

«uses»

«uses»

Figure 49. Deployment Accounting and Meditation.

Both the Server Node and the Management Node could be split or replicated on more than one host
depending on performance and fault tolerance requirements.

External component diagram:

Architecture Handbook
Deliverable ID: D4 (Part D)

Page : 73 of 77

Version: 01.09
Date: 20 May 04

Status : Proposal
Confid. : Restricted

 Copyright WISE Consortium

Figure 50. Interfaces of SMC provided to WISA.

Provided interfaces:

SrvMgm_ITF is a façade & Java Proxy for all service management interfaces
• Authentication
• User profile retrieval
• Accounting

Administration is several administrative interfaces to service management, which are not relevant for
wireless service developer.
• End-user self-subscription interface
• Management of end-user authorization etc.

Required interfaces:

SSS_ITF is an JMS interface required from a server part of service that can be self-subscribed by end-user.
• Receive Activation

<<Service>> Service
Management Component

 SSS_ITF

 SrvMgm_ITF Administration

Architecture Handbook
Deliverable ID: D4 (Part D)

Page : 74 of 77

Version: 01.09
Date: 20 May 04

Status :Proposal
Confid. : Restricted

 Copyright WISE Consortium

6. REFERENCES
[1] Agha, G. (2002). Adaptive Middleware, Communications of the ACM, 45, 6, pp. 31-32.

[2] Alur, D., Crupi, J., Malks, D. 2001. Core J2EE Patterns: Best Practices and Design Strategies. Prentice Hall. 496 p.

[3] Ammendola, G., Andreadis, A., Benelli, G., Giambene, G. 2002. Integration of distributed data sources for mobile

services. Available on-line at: http://newton.ee.auth.gr/summit2002/ papers/SessionW2/2502128.pdf

[4] Bass, L., Clement, P. and Kazman, R. Software Architecture in Practice. Addison-Wesley. 1998.

[5] Borchers, J. 2001. A Pattern Apprach to Intgration Design, John Wiley.

[6] Buschmann, F. Building Software with Patterns, Proceedings of the Fourth European Conference on Pattern

Languages of Programming and Computing, 1999, Bad Irsee, Germany, 58p.

[7] Buschmann, F., Meunier,R., Rohnert, H., Sommerlad, P., Stal, M. 1996. Pattern-oriented software architecture, a

system of patterns. John Wiley & Sons. 457 p.
[8] Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Nord, R., Stafford, J., 2002.

Documenting Software Architectures- Views and Beyond. Addison-Wesley. ISBN: 0-201-70372-6. 560 p.

[9] Corsaro, A., Schmidt, D., Klefstad, R. O'Ryan, C. 2002. Virtual Component, A Design Pattern for Memory-

Constrained Embedded Applications. Proceedings of the 9th Conference on Pattern Language of Programs, PLoP

2002, Monticello, Illinois, September 8th-12th, 2002, 13 p.

[10] Cross, J., Schmidt, D. 2002. Quality Connector, A Pattern Language for Provisioning and Managing Quality-

Constrained Services in Distributed Real-time and Embedded Systems. Submissions to the OOPSLA 2002 workshop

'Patterns in Distributed Real-time and Embedded Systems', Seattle, Washington, USA, November 5, 2002. 19 p.

[11] Cugola, G., Di Nitto, E., Fuggetta, A., “Exploiting an event-based infrastructure to develop complex distributed

systems”, In 20th International Conference on Software Engineering, 1998.

[12] Dailey, H. PIECING IT TOGETHER, New J2EE Patterns Catalog Helps Solve the J2EE Architecture Puzzle.

http://java.sun.com/features/2001/03/patterns.html.

[13] Dobrica, L., Niemelä, E. 2002. A Survey on Software Architecture Analysis Methods. IEEE Transactions on

Software Engineering, Vol. 28, No 6, July 2002. pp. 638-653.

[14] Fisher, G. E. Guide on Opens System Environment (OSE) Procurements. NIST Special Publication 500-220. Oct.

1994.

[15] Florijn, G. Architectural styles and patterns. Available on-line at: http://www.cs.uu.nl/docs/vakken/swa/Slides/SA-

5-styles.pdf. Referenced: (3.12.2002)

[16] Gamma, E., Helm, R., Johnson, R. and Vlissides, J. 1995). Design patterns: Elements of Reusable Object-Oriented

Software, New York, Addison-Wesley, 395p.

[17] Garbinato, B., Guerraoui, R. 1997. Using the Strategy design pattern to compose reliable distributed protocols.

Proceedings of the 3rd Conference on Object-Oriented Technologies and Systems (COOTS-3).

[18] Giese, H., 2001.Design Pattern and Software Architecture: Software Architecture. Available on-line at:

http://www.uni-paderborn.de/cs/ag-schaefer/Lehre/Lehrveranstaltungen/Gill, C., Niehaus, D., DiPippo, L., Wolfe,

V., Welch, L. 2002. Mapping a Multi-Level Scheduling Pattern Language to Distributed Real-Time Embedded

Applications. Submissions to the OOPSLA 2002 workshop 'Patterns in Distributed Real-time and Embedded

Systems', Seattle, Washington, USA, November 5, 2002. 15 p.

[20] Gitsels, M., Sauter, J. 2000. Profile-based Service Browsing - A Pattern for Intelligent Service Discovery in Large

Networks. Submissions to the OOPSLA 2000 workshop 'The Jini Pattern Language', Minneapolis, Minnesota USA,

October 15-19, 2000. 3 p.

Architecture Handbook
Deliverable ID: D4 (Part D)

Page : 75 of 77

Version: 01.09
Date: 20 May 04

Status : Proposal
Confid. : Restricted

 Copyright WISE Consortium

[21] Gnutella/Napster Comparison, URL http://www.gnutellanews.com/information/comparison.shtml.

[22] Gokhale, A. 2000. Patterns in Bluetooth. Submissions to the OOPSLA 2000 workshop 'The Jini Pattern Language',

Minneapolis, Minnesota USA, October 15-19, 2000. 2 p.

[23] Gutberlet, L. ,2000. Peer-to-Peer Computing- A Technology Fad or Fact? European Business School/ Schloss

Reichartshausen am Rhein. Term Paper of Information Systems Management Seminar.

[24] Hartman, R. 2001. Building on patterns. ADT may 2001. 9 p.

[25] Homayounfar, H., 2002. An advanced P2P architecture using autonomous agents. University of Guelph (Ontario,

Canada). Master's Thesis. January 2002. 182 p.

[26] Kalaoja, J., Niemelä, E., Tikkala, A., Kallio, P., Ihme, T., Torchiano, M. WISA Reference Architecture, Deliverable

ID: D4 (Part B).

[27] Kon, F., Costa, F., Blair, G. and Campbell, R. 2002. The Case for Reflective Middleware, Communications of the

ACM, 45, 6, pp. 33-38.

[28] Laverty, R. Initial specification of framework and models, The ITEA project ROBOCOP (Robust Open Component

Based Software Architecture for Configurable Devices Project), Deliverable 1.3, May 2002,

http://www.extra.research.philips.com/euprojects/robocop/

[29] Lee, S., Han, D., Lee, D. 2000. A pattern for Managing Distributed Workflows. Proceeding of the 7th Conference

on Pattern Languages of Programs (PloP 2000), Allerton Park, Monticello, Illinois, USA, August 13 - 16, 2000, 15

p.

[30] Lerner, M., Vaneck, G., Vidovic, N., Vrsalovic, D., 2000. Middleware Networks- Concept, Design and Deployment

of Internet Infrastructure. Boston Kluwer Academic Publishers. 375 p.

[31] Longshaw, A. 2001. Choosing Between COM+, EJB, and CCM, In: Heineman, G. and Councill, W. (eds.).

Component-Based Software Engineering, New York, Addison-Wesley, pp. 621-640.

[32] Loyall, J., Rubel, P., Schantz, R., Atighetchi, M., Zinky, J. 2002. Emerging Patterns in Adaptive, Distributed Real-

Time, Embedded Middleware. Proceedings of the 9th Conference on Pattern Languages of Programs, PLoP 2002,

Monticello, Illinois, September 8th-12th, 2002, 11 p.

[33] Lutz, J. 2000. EAI Architecture Patterns. EAI Journal, March 2000. Pp. 64-73.

[34] Marinucci, T., Welch, L., Masters, M., Werme, P. 2002. A Pattern Language for Engineering Dynamic Real-Time

Applications. Submissions to the OOPSLA 2002 workshop 'Patterns in Distributed Real-time and Embedded

Systems', Seattle, Washington, USA, November 5, 2002

[35] McLean, S. 2001. Tie Into Remote Objects, .NET Remoting and C# make it a snap to use the Observer design

pattern in your distributed applications. .Net Magazine - Online, Available on-line at:

http://www.fawcette.com/dotnetmag/2001_12/online/online_eprods/smclean/default.asp

[36] Messerschmitt, D. and Szyperski, C. 2001. Industrial and Economic Properties of Software: Technology, Processes,

and Value, Berkeley, California, University of California at Berkeley, Computer Science Division, 51p. UCB//CSD-

01-1130.

[37] Neil, M. 2001. Turning to OO Platforms During Mobile Phone Design. Available on-line at:

http://www.commsdesign.com/story/OEG20011120S0075

[38] Niemelä, E., Matinlassi, M., Lago, P. 2002. Architecture-centric approach to wireless engineering. To be published

in the book of IEC (International Engineering Consortium) 'Annual review of Communications', Vol. 46, June 2003.

[39] Olson, D. 2001. A pocket-sized Broker. In: Rising, L. (ed.). Design Patterns in Communications Software. New

York, USA, Cambridge University Press, pp. 237-247.

Architecture Handbook
Deliverable ID: D4 (Part D)

Page : 76 of 77

Version: 01.09
Date: 20 May 04

Status : Proposal
Confid. : Restricted

 Copyright WISE Consortium

[40] P2P Working Group, "Taxonomy of Peer-to-Peer Architectures" http://www.peer-to-

peerwg.org/tech/taxonomy/Docs/P2P-Taxonomy-v095.doc (14.12.2002)

[41] Parameswaran, M.; Susarla, A.; Whinston, A.B., 2001. P2P Networking: An Information-Sharing Alternative. IEEE

Computer, July 2001.Pärssinen, J., Turunen, M. 2000. Patterns for Protocol System Architecture. Proceeding of the

7th Conference on Pattern Languages of Programs (PloP 2000), Allerton Park, Monticello, Illinois, USA, August 13

- 16, 2000. 26 p.

[43] Pree, W. and Pasetti, A. 2001. Embedded Software Market Transformation Through Reusable Frameworks, In:

Henzinger, T. and Kirsch, C. (eds.). Embedded Software, First International Workshop, EMSOFT 2001, Tahoe

City, CA, USA, October 8-10, 2001, Proceedings, Berlin, Germany, Springer-Verlag, pp. 274 - 286.

[44] Pryce, N. 2001. Abstract Session: an object structural pattern. In: Rising, L. (ed.). Design Patterns in

Communications Software. New York, USA, Cambridge University Press, pp. 191-208.

[45] Raatikainen, K. Middleware in Mobile World, OT Land, LogOn Technology Transfer GmbH, June, 2003.

[46] Schmidt, D. 2002. Middleware for real-time and embedded systems, Communications of the ACM, 45, 6, pp. 43-48.

[47] Schmidt, D., Cleeland, C. 2001. Applying a pattern language to develop extensible ORB middleware. In: Rising, L.

(ed.). Design Patterns in Communications Software. New York, USA, Cambridge University Press, pp. 393-438.

[48] Schmidt, D., O'Ryan, C., Othman, O., Kuhns, F., Parsons, J.. 2001. Applying patterns to develop a pluggable

protocols framework for ORB middleware. In: Rising, L. (ed.). Design Patterns in Communications Software. New

York, USA, Cambridge University Press, pp. 439494.

[49] Schmidt, D., Stal, M., Rohnert, H. and Buschmann, F. 2000. Pattern-Oriented Software Architecture, Volume 2:

Patterns for Concurrent and Networked Objects, John Wiley & Sons, 633p.

[50] Silva, O., Garcia, A., de Lucena, C. The Reflective Blackboard Architectural Pattern for Developing Large-Scale

Multi-Agent Systems. Proceedings of the 1st International Workshop on Software Engineering for Large-Scale

Multi-Agent Systems (In Conjunction with ICSE 2002), Sunday, May 19, 2002, Orlando, Florida, USA.

[51] Subramonian, V. Gill, C. 2001. Towards a Pattern Language for Networked Embedded Software Technology

Middleware. Submissions to the OOPSLA 2001 workshop 'Towards Patterns and Pattern Languages for OO

Distributed Real-time and Embedded Systems', Marriott Hotel, Tampa Bay, Florida/USA, October 14th, 2001. 7 p.

[52] Sun microsystems. Designing Wireless Clients for Enterprise Applications with Java Technology. Available on-line

at: http://java.sun.com/blueprints/earlyaccess/wireless/designing/designing.pdf

[53] Telemanagement Forum. On-line at: http://www.tmforum.org/

[54] Tikkala A., Matinlassi M 2002. Platform Services for Wireless Multimedia Applications: Case Studies, In: 1st

International Conference on Mobile and Ubiquitous Multimedia, December 2002, Oulu, Finland

[55] Völter, M., Kircher, M., Zdun, U. 2002. Object-Oriented Remoting - Basic Infrastructure Patterns. In: Hruby, P.

and Soerensen, K. (eds.) Proceeding of the First Nordic Conference on Pattern Languages of Programs,

VikingPLoP 2002, Microsoft Business Solutions, pp. 201-226. Available on-line at: http://plop.dk/vikingplop/

[56] Welch, L., Marinucci, T., Masters, M., Werme, P. 2002. Dynamic Resource Management Architecture Patterns.

Proceedings of the 9th Conference on Pattern Languages of Programs, PLoP 2002, Monticello, Illinois, September

8th-12th, 2002, 13 p.

[57] Yang, S., Tsai, J., Chen, I. 2002. Development of Wireless Embedded Systems Using Component Based Software.

International Journal of Software Engineering and Knowledge Engineering, Vol. 12, No. 2, pp. 135-153

[58] Yuan, M., Long, J. 2002. Build database-powered mobile applications on the Java platform. Available on-line at:

http://www.javaworld.com/javaworld/jw-01-2002/jw-0118-midp.html

[59] Landay, Borriello, "Design Patterns for Ubiquitous Computing", IEEE Computer, August 2003, pp 93-95

Architecture Handbook
Deliverable ID: D4 (Part D)

Page : 77 of 77

Version: 01.09
Date: 20 May 04

Status : Proposal
Confid. : Restricted

 Copyright WISE Consortium

