
1

Reverse Engineering and Code
Annotations

Filippo Ricca
ITC-Irst

Povo (Trento), Italy
ricca@itc.it

**

* @has 1..* Member * Student

* @composed 1..* Has 1..* Department

*/

class School {

Name name;

String address;

Number phone;

…

}

Reverse engineering and Code
Annotations 2

ITC-Irst

ITC-irst is a public research center of the Autonomous
Province of Trento, Italy. It was founded in 1976. For
nearly three decades, the Center has been conducting
research in the areas of Information Technologies,
Microsystems, and Physical Chemistry of Surfaces and
Interfaces.

Reverse engineering and Code
Annotations 3

STAR Group
� Background

- Static code analysis and restructuring.
- Reverse Engineering (CANTO)
- Software Testing

� Current activities
- Refactoring
- Aspect Oriented Code
- Analysis, Testing and Restructuring of Web applications
- Code Annotations

4

Reverse Engineering
� Reverse engineering is the process of taking

something (a device, an electrical component, a car, a
software, …) apart and analyzing its working in details,
usually with the intention to construct a new device or
program that does the same thing.

� Reverse engineering is used often by military, in order
to copy other nations’ technology.

Examples of military reverse-engineered projects include:

� Soviet Union reverse-engineered Tu-4 Bull bomber from United
States B-29

� Soviet Union personal computer AGATHA was reverse-engineered
from the Apple II

� North Korea reverse-engineered the Russian missile Scud Bs to
make their own Scud Mod A

Reverse engineering and Code
Annotations 5

Legacy systems
� They were implemented years ago.
� Their technology became obsolete (languages, coding

style, hardware, …).
� They have been maintained for a long time.
� Their documentation (if it exists) became obsolete.
� Original authors are not available.
� Maintenance is difficult .
� They contain business rules not recorded elsewhere.
� They cannot be easly replaced.
� They represent a large investiment.
…

Reverse engineering and Code
Annotations 6

Legacy dilemma

� to build the new system from scratch
� trying to understand the legacy code and to

try to reconstitute it in a new form

What should we do with legacy code?

7

Forward and Reverse Engineering
� Forward engineering is the traditional process of

moving from high-level abstractions to the physical
implementation of a system.

� Reverse engineering is a process that helps
understanding the system. It is a process of
examination not a process of change or replication.

Requirements Design Implementation

Requirements Design Implementation

Astract Code Representation Code

Reverse engineering and Code
Annotations 8

Failure or success

� Answering this question requires an exact
definition of reverse engineering.

� The answer is higly dependent on the specific
goal of the reverse engineering.

Is Reverse Engineering of legacy systems
doomed to failure?

9

Definition (Strong)

1. The process is completely automatic
2. These specifications are at a sufficiently abstract level

so that the system can be implemented in a new
language or recoded in a more maintainable way.

3. The time and effort required to derive the specifications
is less that starting from scratch.

The process of deriving formal specifications from the source
code of a legacy system, where these specifications can be
used to forward engineering a new implementation of that
System.

There are several assumptions underlying this definition:

Requirements Design Implementation

Reverse engineering and Code
Annotations 10

State of the art
� The current state of art in real-world reverse

engineering is far from this goal. There are a lot
of tools that help the engineering to
understand better the software but not exist
tools that, completely automatically, derive
abstract formal specifications from code.

Specifications Code NO!

Reverse engineering and Code
Annotations 11

Tools available
1. Pretty printers (ex. SeeSoft)
2. Diagram generator (software views: flowcharts,

data flow diagrams, call graph, …)
3. Embedded comments extractor (ex. Javadoc)
4. Software metrics
5. Design recovery tools (ex. UML class diagram

extractor)
6. Others …

12

Definition (Weak)

1. The goal of reverse engineering is extracting a
knowledge base and not a complete set of
specifications

2. The process is not completely automated (human
assistance)

3. Reverse engineering is successful if the cost of
extracting information about legacy systems plus effort
to arrive specifications is less than the cost of starting
from scratch.

The automated or assisted process of deriving a knowledge
base describing a legacy code from its source code.

Knowledge base Code

Reverse engineering and Code
Annotations 13

What can be automatically extracted?
� Whether is possible to automatically extract specifications

from code is an open question.
� Numerous current researches aim at extracting design

information at various levels of abstractions.

� These approachs generally match code patterns (plans)
against the code to recognize high-level abstractions
(programming concepts, architectural concepts, domain
concepts).

Design Information Code

Reverse engineering and Code
Annotations 14

Model of tools
architecture

Source Code Parser AST

Pattern Matcher

Results

Viewer

Views

Grammar

Library of plans

Reverse engineering and Code
Annotations 15

Agile Processes and Reverse Engineering

� No design phase is prescribed, except for quick design
sessions, the output of which serves just communication
and discussion purposes, but is by no means a persistent
artifact that documents the system.

� Different from UML-based processes.
� Strong statement: “the source code is the design”.
� Reverse engineering can help in the Program

Comprehension phase that is useful for:
- Refactoring
- Maintenance
- ….

Reverse engineering and Code
Annotations 16

Reverse Engineering Tools
� We need to be realistic about what outcomes

to expect.
� There seems to be general agreement that, in

practice, reverse engineering of legacy code
is at least quite laborious and difficult.

� The old notion of reverse enginnering may
well be doomed to failure.

� Cooperative extraction (automated
extraction tools + programmers) may be a
good solution.

17

Design Recovery Tools (1)
Imagix tool

‘C code’

Reverse engineering and Code
Annotations 18

Design Recovery Tools (2)
CVF 3.0 is a automated
program Flow chart generator.
It can perform automated
reverse engineering of
program code into
programming flowcharts,
help programmers to
document, visualize and
understand source code.

It works with: C, C++, VC++,
VB, VBA, VBScript, ASP,
Visual C#, Visual Basic .NET,
Visual J# .NET, VC++.NET,
ASP.NET, Java, JSP,
JavaScript, Delphi,
PowerBuilder and Perl.

Reverse engineering and Code
Annotations 19

UML Class Diagram Recovery

Class A {
int x, y
…

}
Class B {

…
}
Class C extend B {

A a
…

}

C
a

B
A
x, y

extends
uses

20

Information shown (1)
� Class property

- fields
- methods

class Toolbar {

protected Tool currentSelection;

protected Integer toolCount;

public void pickItem(Integer i) {}

public void addTool(Tool t) {}

public void removeTool(Integer i) {}

public Tool getTool() {}

protected void checkOrphans() {}

private void compact() {}

}

� Element property
- types
- visibility

Reverse engineering and Code
Annotations 21

Information shown (2)
Relationships
� Inheritance/realization: a

class extends/implements a
class/interface.

� Aggregation/composition:
a class is part of another
class.

� Association: a class holds
a stable reference toward
another class.

� Dependency: a change in a
class might impact another
class.

Reverse engineering and Code
Annotations 22

Limits of UML Class Diagram Recovery Tools
1. For a medium size system (the

order of 20K LOC) it is quite
common to have 50-100 classes.
A design diagram reverse
engineered from the code that
shows them, even without
displayning any property, is
completely unreadable for
human, whose cognitive abilities
permit grasping information
related to 5-10 objects at most.

2. Not all the useful information can
be recovered (statically) from the
code.

Reverse engineering and Code
Annotations 23

Java.util (14 KLOC, 41 classes and 13 interfaces)

Example

Reverse engineering and Code
Annotations 24

Information missing
� Once implemented aggregation and association

are indistinguishable.
� Multiplicity can not be recovered (statically is

undecidible to determine the number of objects
involved in a given relationship).

� Impossibility to recover relation name and roles.
� When weakly typed containers are used, the

actual class of the contained objects is not known.
� Tagged values, constraints, properties and

comment notes cannot be recovered automatically.

Reverse engineering and Code
Annotations 25

Filtering

Java.util (only List and Set, No attributes)

� By filtering, users specify which information is
irrelevant and can be skipped.

Reverse engineering and Code
Annotations 26

Multiple Views

Java.util
VIEW1: only List and Set VIEW2: … VIEW3: …

� When defining multiple views for a given system,
programmers decide which elements (classes,
fields, methods, …) belong to which view.

Reverse engineering and Code
Annotations 27

Code annotations
� Code annotations are introduced to overcome

the limitation of reverse engineering described
above and to refine the default display options
into more useful ones.

� Code annotations “guide” reverse engineering
tools.

� Code annotations allows Filtering and Multiple
views.

� They respect the Javadoc syntax of
annotations (@ preceds the name of the
annotation).

Reverse engineering and Code
Annotations 28

UMLGraph
Java code

+
Annotations

UMLGraph
UML Class
diagram

� The UML Class diagram is generated in Graphviz
format that can be easly transformed in Postcript, Gif,
Jpeg, …

Example:
javadoc -docletpath UmlGraph.jar -doclet UmlGraph -private Simple.java

javadoc will create by default a file named graph.dot in the current directory

dot -Tps -ograph.ps graph.dot

(http:/www.spinellis.gr/sw/umlgraph/)

Reverse engineering and Code
Annotations 29

First example

class Tyre {}

class Engine {}

class Body {}

/**

* @composed 1 - 4 Tyre

* @composed 1 - 1 Engine

* @composed 1 - 1 Body

*/

class Car {}

30

Modelling
The UMLGraph class diagrams allows you to model:
• classes (specified as Java classes)

• attributes (specified as Java class fields)

• operations (specified as Java class methods)

• implementation relationships (specified using the Java implements declaration)

• generalization relationships (specified using the Java extends declaration or (for
multiple inheritance) the javadoc @extends tag)

• association relationships (@assoc tag)

• navigatable association relationships (@navassoc tag)

• aggregation relationships (@has tag)

• composition relationships (@composed tag)

• dependency relationships (@depend tag)

Reverse engineering and Code
Annotations 31

Relationship
All relationship tags appart from @extends take four
arguments:

• The source adornments (role, multiplicity, and visibility)

• The relationship name

• The target adornments (role, multiplicity, and visibility)

• The target class

/** @navassoc "1\n\n+owner\r" - "*\n\n+key" Password */

Example:

Reverse engineering and Code
Annotations 32

Relationship example
/** @assoc * - "*\n\n+user " User */

class UserGroup {}

/** @navassoc "1\n\n+owner\r" - "*\n\n+key" Password */

class User{}

class Password{}

Reverse engineering and Code
Annotations 33

Global vs Local setting
� Programmers can decide to change the default

show/hide setting for classes/interfaces in two ways:
Global level or at the Local level.

� Default setting: only class name (no fields, no
methods, no associations, yes inheritance and
realizations).

� Global annotations change the setting for all classes of
the project.

� Local (class) annotations override the global setting for
the class being processed.

34

class Adapter {

public Root getRoot();

}

abstract class Element {

Root getRoot() {}

}

class ObjectType extends Element {}

/**

* @has "1..1" - "1..1" ObjectType

**/

class ObjectMap extends Element {

private ObjectType m_type;

}

class Table extends Element {}

class DataOperation extends Element {}

**

* @assoc "1..1" - "0..n" Adapter

* @assoc "" - "0..n" ObjectType

* @assoc "" - "0..n" ObjectMap

* @assoc "" - "0..n" Table

* @assoc "" - "0..n" DataOperation

**/

class Root {

private Map m_adapters;

private List m_types;

private List m_maps;

private List m_tables;

private List m_ops;

public Adapter getAdapter(Class klass) {}

}

Reverse engineering and Code
Annotations 35

Default diagram

Reverse engineering and Code
Annotations 36

Adding Fields, Methods and Types

Reverse engineering and Code
Annotations 37

Global annotations
� Global annotations are specified in front of a
special class named UMLOptions (to add at the
project).

/**

* @opt attributes

* @opt operations

* @opt types

* @hidden

*/

class UMLOptions {}

Reverse engineering and Code
Annotations 38

Local annotations
� Local annotations are specified in front of the

class that we have to change.

/**

* @opt attributes

* @opt operations

*/

class Adapter {

public Root getRoot();

}

Reverse engineering and Code
Annotations 39

getRoot()

Reverse engineering and Code
Annotations 40

Adding annotations to fields and methods

� Some annotations can
be added directly to
fields and methods:

- @hidden hides a field
or method

- @show show a field or
method

- @stereotype add a
stereotype

- @tagvalue add a
tagvalue

class Root {

private Map m_adapters;

private List m_types;

/** @hidden */

private List m_maps;

private List m_tables;

private List m_ops;

/** @show */

public Adapter getAdapter(Class klass) {}

}

Reverse engineering and Code
Annotations 41

Stereotypes and tagged values
/**

* @stereotype container

* @tagvalue version 3.2

*/

class ActionQueue {

void add(Action a) {};

/** @tagvalue version 1.0 */

void add(Action a, int n) {};

void remove(int n) {};

/** @stereotype query */

int length() {};

/** @stereotype "helper functions" */

void reorder() {};

}

Reverse engineering and Code
Annotations 42

New annotations “added”
� @opt assoc_default: show associations

recovered automatically (when a field
references an object of another class).

class A {
B b;

}
� @opt library: show library classes.
� @opt hide_all: hide all classes.
� @note: add a note to a class.
� @show: show a class, an interface, a field

or a method.

43

@opt assoc_default

Reverse engineering and Code
Annotations 44

@note

Reverse engineering and Code
Annotations 45

Views (1)
� To create a new view, it is sufficient to define

a new class with a syntax similar to that of
UMLOptions.

/**

* @opt all

* @hidden

*/

class View_1 {}

javadoc -docletpath UmlGraph.jar -doclet UmlGraph -view View_1 -private A.java

� To produce a view:

Reverse engineering and Code
Annotations 46

Views (2)
� The setting of a single element (class, field,

method, …) in a given view can be also changed,
by adding an argument to the annotation that
specifies the specifies the target view.

Example:
/** @hidden view_1 */
Class student {

…
}

Reverse engineering and Code
Annotations 47

View Definition Process

• The process for the definition of a new view is
incremental and operates through successive
refinements. It starts from an empty view and it
adds elements (classes or relationships) or it
refines already included elements until the
displayed view is an accurate representation of
the view's intent.

48

Steps
Define a new view (select a meaningful name)

Make the view empty (hide_all)

Repeat the following steps until a satisfactory view is obtained:

• Select a class that contributes to the view and make it visible (if not yet
such)

Select a subset of its attributes/methods that are meaningful for the view and
make them visible

If necessary, add a note to explain the role of this class in the view

OR:

• Select a pair of classes displayed in the view such that a relationship
relevant for the view exists between them;

If necessary, decorate the chosen relationship with name, roles and
multiplicity

DISPLAY THE NEW VIEW

49

UML Tools
� UML diagram support: supports “N” UML

diagrams.
� Forward engineering: generates the source

code of the classes with the methods stubbed out
� Reverse engineering
� Round-trip: synchronizes the UML models with

the changes in the code
� Popular UML tools:

- Rational Rose
- Together
- Poseidon
- Omondo

