Unified Modeling Language
(UML) crash course

/ SOftEng S
’J’,_ '\«"‘ RIS softeng. polito. it

Learning objectives

» Understand the concepts of UML
model and UML diagram

¢ What is a UML Class Diagram?

* Understand the steps of development
process

* How to translate specs to code?

SOftEng

Intro

Note well

* UML is a standardized modeling and
specification language by the Object
Management Group (OMG)

* Graphical notation to specify, visualize,
construct and document an object-oriented
system

* Support throughout many development phases
(analysis and requirements, high-level design,
detailed design, implementation, deployment ...)

* Integrates the concepts of Booch, OMT and
OOSE, and coalesces them into a single,
common and widely used modeling language

* This slide set presents a very small fraction
of UML capabilities

* Further readings

+ www.cetus-links.org

* M.Fowler, K. Scott, “UML Distilled 2" ed.”,
Addison-Wesley

* ArgoUml, UML design tool
¢ http://argouml.tigris.org

* Omondo UML, Eclipse plugin for UML
¢ http://www.omondo.com

SOftEng

Models and diagrams

Models and diagrams

* |t is important to distinguish between a UML
model, and a (set of) UML diagram(s)

= A diagram is a graphical representation of
the information in the model, but the model
exists independently

* Use Case Diagram, Collaboration Diagram,
Activity Diagram, Sequence Diagram,
Deployment Diagram, Component Diagram,
Class Diagram, StateChart Diagram

* There are three prominent models of the
UML system development

* Functional Model - Showcases the
functionality of the system from the User's
Point of View

* Object Model - Showcases the structure and
substructure of the system using objects,
attributes, operations, and associations

* Dynamic Model - Showcases the internal
behaviour of the system

SOftEng

Models and diagrams

Use Case Diagram

Functional Model |Use Cases Diagrams

Object Model Class Diagrams

Sequence Diagrams,
Dynamic Model Activity Diagrams,
Statechart Diagrams

Restaurant (zimplified)
/
/
=
\

o E=D

Chef

SOftEng

Class Diagram

/N

Patrons | |Fuuddishes| | Cook || Waiter ‘

Sequence Diagram

| Ered Bab

Patron

‘ Hank ‘ ‘ Eenee

MVaiter Cook Cashier

! arder food_ :
order food

L serve wine

! serve foad .'w

pay

Class diagram

ig 4 SOftEng

Class and object

Student joe: Student
. first first = Joe
attributes { | jast last = Smith
id id=1234
methods { print() print()
Class Object
SOftEng

Class/Object Diagrams

Class/Object Diagrams

= Class diagrams

* Shows relationships among (part of the)
application classes

+ Classes and Associations

* Object diagrams

= Class diagrams

Student C\ passed O

multiplicity
direction

= Object diagrams

joe:Studen passed jcj:Exam
* Shows relationships among (part of the) S
application objects
¢ Objects and Links
SOftEng SOftEng
Multiplicity of assoc. ends Example
n Student Exam

—:l Exactly n
ﬂ Zero or more
4": Between m and n (included)

*

m
—|:| m or more
¢|:| Zero or one (optional)

Types of association

= Use

Use

. Student passed
+ B uses A | B | ncapmuate JT :
- id
Public (| +) print ()
= Aggregation (part of) 0
. signed for .
* B is part of A ’ “ Exam
- date
- grade
Course 1 ‘
* Inheritance (/s a) perod B
- instructor
*Bis a child of A
SOftEng SOftEng
17 18
Aggregation Inheritance
Car 1 Engine Boin
> power 9
Animal Vegetable
class Car { 1 4 Tyre HumanBeing ﬂ K
Tyre t[4]; CD Player Flower
Engine m; Vana ﬁ K
ger
CDPlayer cd; Customer
}
SOftEng SOftEng

20

Process

Analysis

» |dentify classes

* Substantives and real objects (having
attributes)

» |dentify attributes

* Substantives, physical properties
» |dentify methods

* Delegation, information hiding
» |dentify associations

" j =tftbng SOitEng
UML analysis Design

Student 1
«| first
Course !351 Exam
i
name * exams passed date
period - grade
instructor signed for print O student
students
for
1l

23

» Add/modify classes for

* User Interface / Graphical user Interface

* DB access
* Net distribution
¢ Efficiency/Optimization

24

OO - Design Heuristics

= All data should be hidden within its class
* Keep related data and behavior in one place
*= Model the real world whenever possible

= Eliminate classes that are outside the
system

* Avoid all-powerful (omnipotent) classes

* Minimize the number of messages sent
between two classes

More OO Design Heuristics

25

» |[f a class contains objects of another
class, then the containing class should
be in charge of sending messages to
the contained objects

* The containment relationship should
always imply a uses relationship

* A class must know what it contains,
but it should not know who contains it

SOftEng

26

Low level design

* Implement classes
* Implement attributes
* Define the type
* Implement methods
* Define the prototype
* Implement associations

UML low-level design

27

System
-sc:Vector
-ss:Vector
-se:Vector
1] 4L [2
* * N
Course Student
Stri * * first:String Exam
- name:String - : 1 0% '
- period:int - last:String - datz.l?_ate
-instructor:String - id:String - grad e:nt g
- students:Vector - exams:Vector - Student Student
+ print ()

SOftEng

28

How to implement
associations

)/ SOItEng

Association :1

= From Exam towards Course

Exam Course

Class Exam {
Course c;
setCourse(Course c){
this.c=c;} }
¥

Class Course {

30

Association :n

= From Course towards Exams

Exam Course

Class Course {
Vector exams;

Course(){ exams = new Vector(); }
addExam(Exam e){ exams.add(e);}

SOftEng ¥

Association 1:n

31

= Both directions

Exam Course
* 1
Class Exam_{ Class Course {
Course c; Vector exams;
setC(_)urS?((?Ourse o Course(Q{ exams = new Vector(); }
) this.c=c; addExam(Exam e){ exams.add(e);}
3
b
SOftEng

32

Association 1:1

= Both directions

Course Instructor

Class Course {
Instructor i;

} 3

Class Instructor {
Course c;

Association n:m

33

= Both directions

Course Student

Class Course {
Vector students;
Course(){
students = new Vector();

Class Student {
Vector courses;
Students(){

addStudent(Student s){
students.add(s);
} }
} SOftEng 3

addCourse(Course c){
courses.add(c);

courses = new Vector();

34

Wrap-up session

= UML is a graphical notation for
modeling and documenting OO
systems

* Class diagram
* Classes and associations
* Three types of associations
* Developing is not “just coding”!
* Use the process to tackle the req. spec.

35

