
Unified Modeling Language
(UML) crash course

Version 1.0 Oct 2005

 2

Learning objectives
Understand the concepts of UML
model and UML diagram

What is a UML Class Diagram?
Understand the steps of development
process

How to translate specs to code?

 3

Intro
UML is a standardized modeling and
specification language by the Object
Management Group (OMG)
Graphical notation to specify, visualize,
construct and document an object-oriented
system
Support throughout many development phases
(analysis and requirements, high-level design,
detailed design, implementation, deployment ...)
Integrates the concepts of Booch, OMT and
OOSE, and coalesces them into a single,
common and widely used modeling language

 4

Note well
This slide set presents a very small fraction
of UML capabilities

Further readings
www.cetus-links.org
M.Fowler, K. Scott, “UML Distilled 2nd ed.”,
Addison-Wesley

ArgoUml, UML design tool
http://argouml.tigris.org

Omondo UML, Eclipse plugin for UML
http://www.omondo.com

 5

Models and diagrams
It is important to distinguish between a UML
model, and a (set of) UML diagram(s)
A diagram is a graphical representation of
the information in the model, but the model
exists independently

Use Case Diagram, Collaboration Diagram,
Activity Diagram, Sequence Diagram,
Deployment Diagram, Component Diagram,
Class Diagram, StateChart Diagram

 6

Models and diagrams
There are three prominent models of the
UML system development

Functional Model - Showcases the
functionality of the system from the User's
Point of View
Object Model - Showcases the structure and
substructure of the system using objects,
attributes, operations, and associations
Dynamic Model - Showcases the internal
behaviour of the system

 7

Models and diagrams

Sequence Diagrams,
Activity Diagrams,
Statechart Diagrams

Dynamic Model

Class DiagramsObject Model

Use Cases DiagramsFunctional Model

 8

Use Case Diagram

 9

Class Diagram

 10

Sequence Diagram

Class diagram

 12

Class and object

print()

first
last
id

Student

print()

first = Joe
last = Smith
id = 1234

joe: Student

Class Object

attributes

methods

 13

Class/Object Diagrams
Class diagrams

Shows relationships among (part of the)
application classes
Classes and Associations

Object diagrams
Shows relationships among (part of the)
application objects
Objects and Links

 14

Class/Object Diagrams
Class diagrams

Object diagrams

Student Exampassed 0,* 1, 1

joe:Student 01jcj:Exampassed

direction
multiplicity

 15

Multiplicity of assoc. ends

n
Exactly n

*
Zero or more

0..1 Zero or one (optional)

m..n
Between m and n (included)

m..* m or more

 16

Example

Student Exam

Links

NONO

 17

Types of association
Use

B uses A

Aggregation (part of)
B is part of A

Inheritance (is a)
B is a child of A

A B

A B

A B

 18

Use

+ print ()

- first
- last
- id

Student

- name
- period
- instructor

Course

- date
- grade

Exam

*

*

signed for

1

*
for

1

0
..*

passed
Private

(encapsulated)

Public

 19

Aggregation
Car Engine

power

CD Player

Tyre1
4

1

class Car {
 Tyre t[4];
 Engine m;
 CDPlayer cd;
}

 20

Inheritance

Animal

Manager

Being

Vegetable

Flower

HumanBeing

Customer

Process

 22

Analysis
Identify classes

Substantives and real objects (having
attributes)

Identify attributes
Substantives, physical properties

Identify methods
Delegation, information hiding

Identify associations

 23

UML analysis

print ()

first
last
id
exams

Student

name
period
instructor
students

Course
date
grade
student

Exam
*

*
signed for

1
*for

1

0..*
passed

 24

Design
Add/modify classes for

User Interface / Graphical user Interface
DB access
Net distribution
Efficiency/Optimization

 25

OO - Design Heuristics
All data should be hidden within its class
Keep related data and behavior in one place
Model the real world whenever possible
Eliminate classes that are outside the
system
Avoid all-powerful (omnipotent) classes
Minimize the number of messages sent
between two classes

 26

More OO Design Heuristics
If a class contains objects of another
class, then the containing class should
be in charge of sending messages to
the contained objects
The containment relationship should
always imply a uses relationship
A class must know what it contains,
but it should not know who contains it

 27

Low level design
Implement classes
Implement attributes

Define the type
Implement methods

Define the prototype
Implement associations

 28

UML low-level design

+ print ()

- first:String
- last:String
- id:String
- exams:Vector

Student

- data : :Date
- grade :int
- student : Student

Exam
1 0..*- name:String

- period:int
- instructor:String :
- students:Vector

Course
**

- sc : Vector
- ss : Vector
- se : Vector

System

1

*

1

*

1

*

How to implement
associations

 30

Association :1
From Exam towards Course

Exam Course

Class Exam {
 Course c;
 setCourse(Course c){
 this.c=c;}
}

* 1

Class Course {

}

 31

Association :n
From Course towards Exams

Exam Course

Class Course {
 Vector exams;
 Course(){ exams = new Vector(); }
 addExam(Exam e){ exams.add(e);}
}

* 1

 32

Association 1:n
Both directions

Exam Course

*

Class Course {
 Vector exams;
 Course(){ exams = new Vector(); }
 addExam(Exam e){ exams.add(e);}
}

Class Exam {
 Course c;
 setCourse(Course c){
 this.c=c;
 }
}

1

 33

Association 1:1
Both directions

Course Instructor

Class Course {
 Instructor i;
}

Class Instructor {
 Course c;
}

1 1

 34

Association n:m
Both directions

Class Course {
 Vector students;
 Course(){
 students = new Vector();
 }
 addStudent(Student s){
 students.add(s);
 }
}

Class Student {
 Vector courses;
 Students(){
 courses = new Vector();
 }
 addCourse(Course c){
 courses.add(c);
 }
}

Course Student
* *

 35

Wrap-up session
UML is a graphical notation for
modeling and documenting OO
systems
Class diagram

Classes and associations
Three types of associations
Developing is not “just coding”!

Use the process to tackle the req. spec.

