
Advanced Programming
Sino-Italian Campus, Tongji University (Shanghai)

Develop an ADT with functions to analyse traffic on an IP network, as follows.

int setPacket(int IPnumber, int nBytes);

States that the node IPnumber has sent nBytes bytes

int setPacketName(int IPnumber, char* name);

States that node IPnumber is called name

void nodesInUsageOrder();

Returns the nodes, ordering them from the most used (in term of bytes sent) to the least used, matched
by the name.

Example:

setPacket(21003 , 60);
setPacket(21015 , 200);
setPacket(22020 , 35);
setPacket(21012 , 200);
setPacket(21003 , 20);
setPacket(21015 , 120);
setPacket(21003 , 10);

setPacketName(21003 , “nodeZ”);
setPacketName(21012 , “nodeJ”);
setPacketName(21015 , “nodeA”);
setPacketName(22020 , “nodeW”);
nodesInUsageOrder();
 // should printout nodeA, 320
 nodeJ , 200
 nodeZ, 90
 nodeW, 35

CONSTRAINTS
The time complexity of all functions should be minimal, considering that setPacket could
be called millions of times per day, setPacketName once per day, nodesInUsageOrder
once per day. In case of conflict between time and space complexity give priority to improve
time complexity.

DISCUSSION

The problem has two parts.

1. Managing the triples (IpNumber, name, nBytes), with setPacket and setPacketName.
Remember that setPacket is called millions of times per day. SetPacketName once per
day, per IpNumber.

2. Ordering IpNumbers on nBytes sent on a day. This is called once per day.

In practice we can immediately write the equation to compute time spent in total, every day

T = t_setPacket * numberOfPacketsSwitchedPerDay + t_setPacket_name *
numberOfDifferentNodes + t_nodesInUsageOrder

Clearly t_setPacket is the term that has the biggest influence because
numberOfPacketsSwitchedPerDay is in the order of millions. Also t_setPacket_name is
important because also numberOfDifferentNodes is a large number. t_nodesInUsageOrder is
only called once per day so it should be less important (however it should not be overlooked
either).

For the first part of the problem. It is better to use one container of triples (and not two
separate containers, IpNumber-name and IpNumber-nBytes – this latter approach would
increase memory usage without advantages on time).

Let’s review our options

• Unbounded array, elements unordered. SetPacket requires to go through all elements, on
average has complexity numberOfDifferentNodes/2

• Linked list, elements unordered. Same as above.

• Unbounded array, elements ordered on IpNumber. setPacket is in practice a search,
doing it with a convenient search algorithm (ex binary search, because the array is
ordered) has complexity ln2(numberOfDifferentNodes)

• BST with key IpNumber. setPacket is a search on a BST, has complexity
ln2(numberOfDifferentNodes)

• Hash table with key IpNumber. setPacket is a get on a hash table, constant time (if the
hash table is correctly sized – in the order of numberOfDifferentNodes)

So the hash table is the best option (provided it is correctly sized)

For the second part of the problem. Assuming we have used the hash table, the triples are not
ordered in any way. We need ordering on nBytes (NOT on IpNumber), remembering that
several nodes can have the same nBytes (so nBytes is not unique). A unique ordering key
would allow using a BST (take each element from the hash, and insert it into a BST using
nBytes as key. Then do an inOrder trasversal of the BST). But nBytes is not unique. Another
option then is to use an orderedArray. Take each element from the hash, and insert it in an
array, keeping it ordered on nBytes. At the end trasversing the array from the first element to
the last returns elements ordered on nBytes.

