
Metro trip frequencies

Some metro systems (e.g. the Shanghai one) use electronic cards to regulate access. Since cards
have an ID it is possible to track frequencies of metro trips for statistical purposes.

Function startTrip(cardID, stationID) simulates the start of a trip at a certain station for a certain
card
Function endTrip(cardID, stationID) simulates the end of a trip at a certain station
Function mostFrequentTrip returns the trip (a pair stationFrom – stationTo) most frequently used
in the metro system
Function mostFrequentTripPerUSer returns the trip used most frequently by a certain user (user
== cardID)

Constraints: minimize execution time for the mostFrequentTrip, mostFrequentTripPerUser
functions.
Notes. Trip from A to B is different than from B to A

Ex
void main(){

 startTrip(1234, "People square"); endTrip(1234, "Siping road");
 startTrip(2234, "People square"); endTrip(2234, "Siping road");
 startTrip(5534, "People square"); endTrip(5534, "Siping road");
 startTrip(5534, "People square"); endTrip(5534, "Siping road");

 startTrip(1234, "People square"); endTrip(1234, "Shanghai railroad");
 startTrip(3334, "People square"); endTrip(3334, "Shanghai railroad");
 startTrip(5534, "People square"); endTrip(5534, "Shanghai railroad");

 mostFrequentTrip(); // returns People Square – Siping Road
 mostFrequentTripPerUser(5534); // returns People Square – Siping Road
 mostFrequentTripPerUser(3334); // returns People Square – Shanghai railroad

}

Discussion of data structure and algorithms

Other solutions are possible and welcome, provided they are of lower or comparable
complexity.

-----------------mostFrequentTrip()

struct trip {
 char* startStation;
 char* endStation;
 int nTrips;
}

max = -1
maxTrip = null;

trips: hash table
 Key: concatenation of startStation-endStation
 Value: struct trip

addTrip (cardId, fromStation, endStation){
 search fromStation-endStation in trips, nTrips++ (complexity: constant)
 if nTrips > max { max = nTrips; maxTrip = fromStation-endStation }
}

mostFrequentTrip(){
 return maxTrip (complexity: constant)
}
Note: n1 <= number of possible trips = numberOfStations* (numberOfStations-1)

overall computing the most frequent trip requires to record each trip (constant)

-----------------mostFrequentTripPerUser()

struct user {
 int cardId;
 tripsOfUser;
}

struct trip2 {
 char* startStation;
 char* endStation;
 int nTimes;
}

tripsOfUser : linked list of trip2, ordered descending on nTimes

users: hash table
 Key: cardId
 Value: struct user

addTrip(cardId, fromStation, toStation){
 search cardId in hash table users (constant)
 in user associated to cardId, search in tripsOfUser the trip fromStation-toStation,
 increase nTimes++, keeping the list ordered by nTimes
 complexity: n2 to search the list, constant to reorder
 (the ordering is constant, because only 1 is added at a time,
 so the trip will either remain in the same position, or shifted -+
 1 position)
}

 mostFrequentTripPerUser(cardId){
 search cardId in hash table users (constant)
 in user associated to cardId, return first trip in tripsOfUser (constant)
}

Note: n2 depends on number of different trips made by cardId, should be n2 << n1

Note2: for tripsOfUser linked list better than array for the type of ordering (array would
require shifting all elements before (or after) the element shifted

Note3: another option is to keep tripsOfUser not ordered, then order it on demand when
function mostFrequentTripPerUser is called. This option is less complex if
mostFrequentTripPerUser is called seldom in comparison to addTrip(), and/or is called
for a limited number of users compared to the total number of users.

