-----------------sales summary

SUMMARY SALES

 Key – yes

 Ordering no

 key == customer code ,

 Value == customer code, total N sales, total value sales

 Search(key)

 Add(sale) sale == n of elements sold, total price

 Hash table

PRODUCTS

 Key – yes

 Ordering no
 Key == product code

 Add(key, value)

 Search(key)

 Hash table – key == product code, value == product code, prices

SALES

 No key

 Ordering no

 Customer code, product code, quantity

 Add(position)

 Get(position) in sequence

 Array or linked list
Algorithm1

 Read sales from file and build SALES

 Read products from fileand build PRODUCTS

 Init SUMMARY
 For each sales record{

 Get one sales record from SALES (customerKey, productKey

 Constant

 Search in PRODUCTS price of productKey

 Search on hash table, constant

 Add in SUMMARY n sale and total price for customerKey

 Search on hash table, constant

 }

 Print SUMMARY

 Complexity = constant

 Memory = space for SALES, SUMMARY, PRODUCTS
Algorithm2

 Read products from fileand build PRODUCTS

 Init SUMMARY

 For each sales record{

 Get one sales record from FILE SALES (customerKey, productKey

 Constant

 Search in PRODUCTS price of productKey

 Search on hash table, constant

 Add in SUMMARY n sale and total price for customerKey

 Search on hash table, constant

 }

 Print SUMMARY

 Complexity = constant

 Memory = space for SUMMARY, PRODUCTS

-----------------TongjiZip
CODING of WORDS
 Word – code – n occurrences
 Add(word) // search word in hash table, add it if does not exist, add 1 occurrence if

 // it exists

 Search(word) // returns -1 if not to be compressed, code if to be compressed
 VisitAndComputeFormulaAndComputeCode
 Key, yes

 Hash table
FILE

 Not needed in memory

Algorithm

 Read IN file , for each word call add(word) on CODING of WORDs
 Complexity n

 Visit all CODING of WORDS, and VisitAndComputeFormulaAndComputeCode
 Complexity n
 Read IN file again, for each word search word on CODING of WORDS, write
 It on OUT, compressed or not

 Complexity n

------------------phonebook

PHONEBOOK

 phoneEntry {name, surname, telNumber}

 key1, surname

 key2, telNumber

 orderingBySurname

 BST
 addAPhoneEntry

 2*log(n)

 searchByName

 searchByNumber

 log(n)

 printInOrder (inOrderVisit)

 n

 case 1 – two BSTs with replicated PhoneEntries
 typedef struct phoneEntry{ char* name; char* surname; int tel;} TYPE

 struct BST1 { // to be ordered according to surname

 TYPE information;

 struct BST1 * left;

 struct BST1 * right;

 }

 struct BST2 { // to be ordered according to tel

 TYPE information;

 struct BST2 * left;

 struct BST2 * right;

 }

case2 - no replication of phoneentries, using pointers

 typedef struct phoneEntry{ char* name; char* surname; int tel;} TYPE

 struct BST1 { // to be ordered according to surname

 TYPE* information;

 struct BST1 * left;

 struct BST1 * right;

 }

 struct BST2 { // to be ordered according to tel

 TYPE* information;

 struct BST2 * left;

 struct BST2 * right;

 }

 Adding a new entry{
 Create the phonebookEntry, fields name, surname, tel

 // temp = malloc (sizeOf(TYPE));

 AddToBST1

 Insert in BST1 (surname, &temp)

 AddToBST2

 Insert in BST2 (tel, &temp)

 }

 printInOrderTelephoneNumbers{

 visitInOrder BST2}

 printInOrderSurnames{

 visitInOrder BST1}

