
Shanghai Metro DESIGN1

Decision 1 - DATA STRUCTURE

ordered container, bounded, no repetitions

the number of elements (pairs station from station to)

is known, P = N*N (order of 100*100)

N = number of stations

Decision 2 DATA STRUCTURE

key is pair stationFrom-stationTotypedef

struct trip {

 char* fromStation;

 char* toStation;

 char* fromToKey;

 int nTrips;

}TYPE;

 ASSUMPTION: no two stations with the same name

Decision3 - ALGORITHM

Step1

we produce all pairs of stations and we insert them in ordered container (this has

to be repeated only if new station is added to metro), once per year?

time analysis: proportional to P

Step2

each time a trip is finished call (millions of times per day)

 addOneTrip (from, to)

 (searches the pair from-to in the container, nTrip++)

time analysis: proportional to P/2 (circa 50000)

 (if binarySearch then would be ln2(P))

Step3 call function – once per day

 computeMostFrequentTrip()

Time analysis: proportional to P

ASSUMPTION: only one max, no ties

SPACE analysis: container with P elements

DESIGN2

Store all trips

Data structure: container , unbounded, one single trip is an element (if 3 trips

from A to B, then 3 elements in the container), overall millions of trips = T

Step 1

Each time there is a new trip, addTrip()

Space: if 30 bytes for one element, T*30bytes

Step2

Go through all trips, find trips with same pair from to, count them

At same time store current max

Time analysis: P * T

Overall (MUCH) worse than design1, both in time and space

DESIGN3

Assumption: trips are not evenly distributed, but follow Pareto law

(so for instance 80% of trips happens between 20% of pairs of stations)

Then design1, but key is nTrips

Decision 1 - DATA STRUCTURE

ordered container, bounded, yes repetitions

the number of elements (pairs station from station to)

is known, P = N*N (order of 100*100)

N = number of stations

Decision 2 DATA STRUCTURE

key is nTrips

struct trip {

 char* fromStation;

 char* toStation;

 char* fromToKey;

 int nTrips;

}TYPE;

Decision3 - ALGORITHM

Step1

we produce all pairs of stations and we insert them in ordered container (this has

to be repeated only if new station is added to metro), once per year?

time analysis: proportional to P

Step2

each time a trip is finished call (millions of times per day)

 addOneTrip (from, to)

 (searches the pair from-to in the container, nTrip++

 Also changes the position of the pair using nTrip as ordering element

)

time analysis:

addOneTrip is called M times

 search(Pair) – x

 average = 0.8* P *.1 + 0.2* P *.9 = P(.08+.18)

 (actual analysis decide if better than design 1 requires to measure the

parameters in the search)

 reorderAllPairs

 not always, when happens exchange lements, constant

Design 3-1

Compute all pairs upfront and insert them

 They all have nTrip = 0,

 There will be more reordering

Design 3-2

No computing pairs upfront, insert new pair the first time it is encountered

 Likely the more frequent trips happen more and stay on top, there will be

average reordering

Design3-3

Use order of pairs from previous day, insert them upfront

 There will be less reordering

