Graphs

i Outline

m Definitions

m Graph implementation as data structure
m Visiting algorithms

m C implementations

i Directed Graph

Directed graph G (also called digraph) is a
pair (V,E), where

m V is the (finite) set of vertexes (or nodes)

m E is the (finite) set of of edges,
corresponding to a binary relation on V

i Representation

Graphs are often represented with
m Circles for vertexes
m Arrows for edges

iEx -
1l
@ ® @

loop

EX (edge from to same
vertex)

.)

v={1,2,3,4,5,6}

E={(1,2),(2,2),(2,5),

(5.4),(4,5),(4,1),(2,4)
(6.3)}

i Un directed graph

An undirected graph is a pair G=(V,E), E
contains unordered pairs of vertexes

Edges are represented with lines

v={1,2,3,4,5,6}
E={(1,2),(2,5),
(5,1),(6,3)}

Edge incident
vertexes 1 and
5

O

10

Vertexes 1 and
5 are
adjacent

O

11

i Degree

In an undirected graph the degree of a vertex
Is the number of incident edges

In a directed graph:

m The indegree is the number of edges
entering a vertex

m The outdegree is the number of edges
exiting a vertex

m The degree is the sum of indegree and
outdegree

A vertex with degree 0 is defined isolated.

12

:_LEX

O

Vertex degree
2
Vertex degree

1

13

iEx

isolated

O

14

i Path

A path from vertex u to vertex u' in graph
G=(V,E) is a sequence of vertexes
(Vo,V1,Vy,..., V) with u=v, and u'=v,,

and (v,_,,v)€E for i=1,2,... k.

Kk is the lentgh of the path

If a path exists from u to u' then u' is said
reachable from u.

A path is simple if all vertexes in it are distinct

15

In bold path 1,2,5.
Length is 2 and path is
simple

16

i Cycle

A cycle is a path with vy=v,.
A loop is a cycle of length 1.
A graph with no cyclesis said acyclic

17

In bold path 1,2,5,1.
It is a cycle, of length 3.

18

,_L Reachability (undirected g)

An undirected graph is connected if each pair
of vertexes has a path that connects them

The connected subgraphs (of maximum size)
are said connected components

A connected graph is composed ofonly one
connected component.

19

components:

{1,2,5}, {3,6}, {4}

The graph has 3
‘ EX connected

20

10

i Reachability (directed g)

A directed graph is strongly connected if for
each ordered pair of vertexes (u,u’) exists a
path from u to u'.

21

i EX Strongly connected

22

11

NOT strongly
connected

23

i Complete graphs

A graph is complete if, for each pair of

vertexes, they are adjacent.

24

12

complete

25

Number of edges in complete
graphs

A complete graph with 77 vertexes has edges:
m /7, directed graph
m /2/2, undirected graph

26

13

i Density

Density of a graph is the ratio number of
edges (|E |) and total possible number of
edges

27

i EXx density 0.5

28

14

i Trees and forestes

Forest : undirected, acyclic graph
Tree: undirected, acyclic, connected graph

iEx

15

N

Graph (no tree no
EX forest because of

cycle)

32

16

i Weighted graphs

Each edge has a weight (number)

33

21

34

17

i Applications of graphs

EX:
m Telephone networks
m Flow chart.

35

i Telephone network (1)

Vertex: dispatching node

Edge: channel with certain bandwidth
(weight)

36

18

i Telephone network (2)

8
C 5
10 B —— \
- .

8
Gm
H

D

37

i Telephone network (3)

Questions:

m Is the graph connected? (if not some calls
are not possible)

m What are critical edges? (if they fail the
graph becomes unconnected)

m What are critical nodes? (if they fail the
graph becomes unconnected)

38

19

i Flow chart

Y

O ‘

O
1 N
< N
0 ~

END

39

i Outline

m Definitions

m Graph implementation as data structure
m Visiting algorithms

m C implementations

40

20

i Implementations

m Adjacency lists
m Adjacency matrix

41

i Adjacency list

Array A, element A[i] contains pointer to
linked list of vertexes adjacent to i.

42

21

22

i Memory

Directed graph: lists contain |E| elements
Undirected graph: lists contain 2|E| elements

Memory usage is O(max(V,E)).

45

i Limits

Checking adjacency u - u
To check it it is needed to visit all list of
adjacent nodes

46

23

i Adjacency matrix

Matrix of size [V|x|V|. Element a; is
mlif (i,j)eE
m 0 otherwise
In undirected graphs the matrix is simmetric.

In weighted graphs element a; contains the
weigth

47

i Ex (undirected)

12345
1(0]1({0]0|1
211{0]1]1{1
3|0/1]0]1]0
410]1({1]0]1
511{1]0]1|0

48

i Ex (directed)

12345
1{0]1]0{0|0O
210{0]1]1]|0
310{0]1]0]0
410(0]0(0]1
5/1{1]0]0|0

@
e

49

i Comparison

Matrix, in comparison with lists:

m Require more memory (unless graph is
very dense)

m Are faster (adjacency is computed in
constant time)

50

25

i Outline

m Definitions

m Graph implementation as data structure
m Visiting algorithms

m C implementations

51

i Visiting algorithms

Visit: starting from a vertex (source) touch all
vertexes connected to it

Two algorithms :
m Breadth visit
m Width visit

52

26

i Breadth

breadth-first search, BFS consists in visiting per
layers:

|I=0, S,={source}
1. Visit all vertexes S, not yet visited and
adjacent to a vertex in S,

2.1=I1+1
3.Repeat from 2 until S, is empty.

53

i FIFO Queue

FIFO queue is used to represent layers:

m Each time a node is visited it is put in the
queue

m At each step a node is extracted from the
queue, its adjacents are checked. If not yet
visited, they are.

54

27

i Coloring

To support the visit vertexes are ‘colored’ as

follows

m Initially all vertexes are white

m A vertex becomes gray when visited the
first time

m A vertex becomes black when all adjacent
vertexes, and not yet visited, are put in the
queue

55

i Pseudo-code

BFS(G, 5)

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18

for ogni vertice u € V[G] - {5}
do color{u] « WHITE
dlu] & oo
m{u] ML
color[s] & GRAY
dis] <0
afs] < NIL
Q« {s)
while 0 # @
do u « head[Q]
for ogni v € Adju]
do if color{v] = wHITE
then color[v] < GRAY
dlv] « d[u] + 1
afv] & u
EnQuUEUE(Q, v)
DEeQuUEUE(Q)
color{u] + BLACK

56

28

i BFS Tree

A width visit produces a BFS tree where
m The root is the source
m Vertexes are the ones of the graph
m Edges are a subset

57

4o

t u

58

29

Start. PutsinQ, sis
grey

e Extract s from Q
e Put adjacents of s in Q, color
them grey
 Color s black

60

30

e Extract w from Q

e Put adjacents of w in Q,
color them grey

e Color w black

e Estract r from Q
ePut adjacents of r in Q, color
them grey
21070] (o] gl o] F>Tod

62

31

e Same with t

e Same with x

64

32

* Same with v

e Same with u

66

33

§o0

S t u

67

i Complexity
Time for BFS is O(V+E).

68

34

i Shortest path

Shortest path (s,v) = min number of arcs on a
path s to v (assuming not weighted graph)

BFS computes shortest paths from source

69

i Depth visit

Depth-First Search, DFS

At each step visits a vertex adjacent to the
last vertex visited

When no adjacents, backtarck to last vertex
with adjacents not visited yet

70

35

i Pseudo-code (1)

DFS(G)
1 for ogni vertice u € V[G]~
do color[u] < WHITE
m{u] —NIL
time « 0
for ogni vertice u € V[G]
do if color{u] = WHITE
then DFS-VisIr(u)

~1 N R W N

71

i Pseudo-code (2)

DFS-Visit(u)
1 color[u] < GrRAY > 11 vertice bianco u € stato appena scoperto
dlu] < time « time + 1
for ogni v € Adj[u] > Si esplora I’arco (u, v)
do if color[v] = WHITE
then n{v] « u
DFS-Visim(v)

color{u] - BLACK ~ Si rende u nero: la sua visita ¢ finita.
Flu] time & time + 1

00 N N AW

72

36

i Coloring

m Initially all white

m Vertex becomes grey when visited first
time

m Black when all adjacents visited

73

i Ex (0)

Source: s

t

u

74

37

75

!L EX(2)

S

t u

76

38

!L EX(3)

S

t

u

77

i Ex(4)

S

t

u

78

39

!L Ex (5)

t

u

79

80

40

i Ex (7)

t

u

81

41

i Ex (9)

t

u

83

42

i Complexity

DFS is ®(V+E).

85

i DFS forest

DFS builds a forest foresta DFS, composed by
one or more DFS trees

86

43

i Outline

m Definitions

m Graph implementation as data structure
m Visiting algorithms

m C implementations

87

i Lettura da file

Si supponga di voler leggere da un file la
descrizione di un grafo e di volerla
memorizzare in una lista di adiacenza.

Occorre definire
m || formato del file

m || formato della rappresentazione in
memoria.

88

44

i File format (one possibility)

First line: number of vertexes 7.
Next n blocks, each block:
m "*Kk“ is vertex number
m Number of adjacent nodes to k
m List of adjacents

89

iEx

* o
o
*
N

[N
w

N WO DM FEDN
SN

WEFRPROWXPAEPLPMNMNWXWENDN

90

45

i Adjacent list

m An array of pointers to VERTEX:
struct vertex{

int nadj;
int *adjlist;
}VERTEX;

m Each VERTEX points to array of integers (size ==
numer of adjacents

All arrays dynamically allocated when reading file

91

iEx

92

46

i Graph.h

typedef struct vertex *VERTEXP;
struct vertex{

int nadj;

int *adjlist;
}ERTEX;

93

i Readgrf (1)

#include <stdio.h>
#include "grafi.h"
VERTEXP graph;
int nvertex;
int readgrf(char namel])
{ FILE *fin;
int nadj, n, i, j;
if((fin=Ffopen(name, "r")) == NULL)
{ printf("Errore in apertura file %s\n", name);
return(0); }
fscanf(fin, "%d\n", &nvertex);
if((graph = (VERTEXP)malloc(nvertex * sizeof(VERTEX))) == NULL)
{ printf("Errore in allocazione graph\n");
return(0); }

94

47

Readgrf (2)

for(i=0; i<nvertex; i++)
{ fscanf(fin, "*%d\n", &n); /* number of vertex */
if(n1=1i)
{ printf("Error in vertex order (%d)\n", n);
return(0); }
fscanf(fin, "%d\n", &nadj);
graph[i].nadj = nadj;
if(nadj = 0)

{ if((graphl[i].adjlist = (int *)malloc(nadj * sizeof(int))) == NULL)

{ printf("Error in adjlist malloc %d\n", i);
return(0); }

for(j=0; j<nadj; j++)
fscanf(fin, "%d\n", &(graphli].adjlist[j1));

}
} 95
Readgrf (3)
fclose(fin);
return(1);
}

48

i Width visit

FIFO queue with two operations:
m Insert

m Extract ;-1 if empty
Instead of coloring uses a vector visited

97

i bfs

void bfs(int root)
{ int vertex, i;
vertex = root;
visited[vertex] = 1;
while(vertex 1= -1)
{ visit(vertex);
for(i=0; i<graph[vertex].nadj; i++)
{ if(visited[graph[vertex].adjlist[i]] == 0)
{ insert(graph[vertex].adjlist[i]);
visited[graph[vertex].adjlist[i]] = 1;
}
}
vertex = extract();
}
}

98

49

i Depth visit

Again uses visited vector

99

i dfs

void dfs(int root)
{ int I;
visited[root] = 1;
visit(root);
for(i=0; i<graph[root].nadj; i++)
{ if(visited[graph[root].adjlist[i]] == 0)
dfs(graph[root].adjlist[i]);

}
k

100

50

