
1

Graphs

2

Outline

Definitions
Graph implementation as data structure 
Visiting algorithms
C implementations



2

3

Directed Graph

Directed graph G (also called digraph) is a 
pair (V,E), where

V is the (finite) set of vertexes (or nodes)
E is the (finite) set of of edges, 
corresponding to a binary relation on V

4

Representation

Graphs are often represented with
Circles for vertexes
Arrows for edges



3

5

Ex

4

1

5 6

2 3

6

Ex

4

1

5 6

2 3

loop
(edge from to same 

vertex)



4

7

Ex

4

1

5 6

2 3

V={1,2,3,4,5,6}
E={(1,2),(2,2),(2,5), 
(5,4),(4,5),(4,1),(2,4)

(6,3)}

8

Un directed graph

An undirected graph is a pair G=(V,E), E 
contains unordered pairs of vertexes
Edges are represented with lines



5

9

Ex

4

1

5 6

2 3

V={1,2,3,4,5,6}
E={(1,2),(2,5), 

(5,1),(6,3)}

10

Ex

4

1

5 6

2 3

Edge incident
vertexes 1 and 

5



6

11

Ex

4

1

5 6

2 3

I vertici 1 e 5 
sono 

adiacenti.

Vertexes 1 and
5 are

adjacent

12

Degree
In an undirected graph the degree of a vertex 
is the number of incident edges
In a directed graph:

The indegree is the number of edges 
entering a vertex
The outdegree is the number of edges 
exiting a vertex
The degree is the sum of indegree and 
outdegree

A vertex with degree 0 is defined isolated.



7

13

Ex

4

1

5 6

2 3

Vertex degree
2

Vertex degree 
1

14

Ex

4

1

5 6

2 3

isolated 



8

15

Path

A path from vertex u to vertex u' in graph
G=(V,E) is a sequence of vertexes 
(v0,v1,v2,…,vk) with u=v0 and u'=vk, 

and (vi-1,vi)∈E for i=1,2,…,k.
k is the lentgh of the path
If a path exists from u to u' then u' is said
reachable from u.
A path is simple if all vertexes in it are distinct

16

Ex

4

1

5 6

2 3

In bold path 1,2,5.
Length is 2 and path is 

simple



9

17

Cycle

A cycle is a path with v0=vk.
A loop is a cycle of length 1. 
A graph with no cyclesis said acyclic

18

Ex

4

1

5 6

2 3

In bold path 1,2,5,1.
It is a cycle, of length 3.



10

19

Reachability (undirected g)

An undirected graph is connected if each pair 
of vertexes has a path that connects them
The connected subgraphs (of maximum size) 
are said connected components
A connected graph is composed ofonly one 
connected component.

20

Ex

4

1

5 6

2 3

The graph has 3 
connected 

components:
{1,2,5}, {3,6}, {4}



11

21

Reachability (directed g)

A directed graph is strongly connected if for 
each ordered pair of vertexes (u,u') exists a 
path from u to u'.

22

Ex

4

1

5

2

Strongly connected



12

23

Ex

4

1

5

2

NOT strongly 
connected

24

Complete graphs

A graph is complete if, for each pair of 
vertexes, they are adjacent.



13

25

Ex

4

1

3

2

complete

26

Number of edges in complete 
graphs

A complete graph with n vertexes has edges:
n2, directed graph
n2/2, undirected graph



14

27

Density

Density of a graph is the ratio number of 
edges (⏐E⏐) and total possible number of 
edges

28

Ex

4

1

3

2

density 0.5



15

29

Trees and forestes

Forest : undirected, acyclic graph
Tree: undirected, acyclic, connected graph

30

Ex Tree



16

31

Ex forest

32

Ex
Graph (no tree no 
forest because of 

cycle)



17

33

Weighted graphs

Each edge has a weight (number)

34

Ex

4

1

5 6

2 3
5

24-9 -6 21



18

35

Applications of graphs

Ex:
Telephone networks
Flow chart.

36

Telephone network (1)

Vertex: dispatching node
Edge: channel with certain bandwidth 
(weight)



19

37

Telephone network (2)

A

C

F

H

G

E

D

B

5

8

10

20

20

20

8 5

38

Telephone network (3)

Questions:
Is the graph connected? (if not some calls 
are not possible)
What are critical edges? (if they fail the 
graph becomes unconnected)
What are critical nodes? (if they fail the 
graph becomes unconnected)



20

39

Flow chart
BEGIN

END

40

Outline

Definitions
Graph implementation as data structure 
Visiting algorithms
C implementations



21

41

Implementations

Adjacency lists
Adjacency matrix

42

Adjacency list

Array A, element A[i] contains pointer to 
linked list of vertexes adjacent to i.



22

43

Ex (undirected g)

5

1

4

2

3

1

2

3

4

5

2 5

1 5 3 4

2 4

5 2 3

1 2 4

44

Ex (directed g)

5

1

4

2

3

1

2

3

4

5

2

3 4

3

5

1 2



23

45

Memory

Directed graph: lists contain |E| elements
Undirected graph: lists contain 2|E| elements

Memory usage is O(max(V,E)).

46

Limits

Checking adjacency u - u‘
To check it it is needed to visit all list of 
adjacent nodes



24

47

Adjacency matrix

Matrix of size |V|×|V|. Element aij is
1 if (i,j)∈E
0 otherwise

In undirected graphs the matrix is simmetric.
In weighted graphs element aij contains the 
weigth

48

Ex (undirected)

5

1

4

2

3

1 2 3 4 5

1 0 1 0 0 1
2 1 0 1 1 1
3 0 1 0 1 0
4 0 1 1 0 1
5 1 1 0 1 0



25

49

Ex (directed)

5

1

4

2

3

1 2 3 4 5

1 0 1 0 0 0
2 0 0 1 1 0
3 0 0 1 0 0
4 0 0 0 0 1
5 1 1 0 0 0

50

Comparison

Matrix, in comparison with lists:
Require more memory (unless graph is 
very dense)
Are faster (adjacency is computed in 
constant time)



26

51

Outline

Definitions
Graph implementation as data structure 
Visiting algorithms
C implementations

52

Visiting algorithms

Visit: starting from a vertex (source) touch all 
vertexes connected to it
Two algorithms :

Breadth visit
Width visit



27

53

Breadth

breadth-first search, BFS consists in visiting per 
layers:
l=0, Sl={source}

1. Visit all vertexes Sl+1 not yet visited and 
adjacent to a vertex in Sl

2. l=l+1
3. Repeat from 2 until Sl is empty.

54

FIFO Queue

FIFO queue is used to represent layers:
Each time a node is visited it is put in the 
queue
At each step a node is extracted from the 
queue, its adjacents are checked. If not yet 
visited, they are.



28

55

Coloring

To support the visit vertexes are ‘colored’ as 
follows

Initially all vertexes are white
A vertex becomes gray when visited the 
first time
A vertex becomes black when all adjacent 
vertexes, and not yet visited, are put in the 
queue

56

Pseudo-code



29

57

BFS Tree

A width visit produces a BFS tree where
The root is the source
Vertexes are the ones of the graph
Edges are a subset

58

Ex (0)
r s t u

v w x y

Source: s



30

59

Ex(1)

∞

∞

∞ ∞

0 ∞

∞

∞

r s t u

v w x y

Start. Put s in Q, s is 
grey

sQ

60

Ex(2)

∞

1

1 ∞

0 ∞

∞

∞

r s t u

v w x y

• Extract s from Q
• Put adjacents of s in Q, color 

them grey
• Color s black

wQ r



31

61

Ex(3)

∞

1

1 2

0 2

∞

∞

r s t u

v w x y

• Extract w from Q
• Put adjacents of w in Q, 

color them grey
• Color w black

rQ t x

62

Ex(4)

2

1

1 2

0 2

∞

∞

r s t u

v w x y

• Estract r from Q
•Put adjacents of r in Q, color 
them grey
•Color r black

tQ x v



32

63

Ex(5)

2

1

1 2

0 2

∞

3

r s t u

v w x y

• Same with t

xQ v u

64

Ex(6)

2

1

1 2

0 2

3

3

r s t u

v w x y

• Same with x

vQ u y



33

65

Ex(7)

2

1

1 2

0 2

3

3

r s t u

v w x y

• Same with v

uQ y

66

Ex(8)

2

1

1 2

0 2

3

3

r s t u

v w x y

• Same with u

yQ



34

67

Ex(9)

2

1

1 2

0 2

3

3

r s t u

v w x y

• Same with y

Q

68

Complexity

Time for BFS is O(V+E).



35

69

Shortest path

Shortest path (s,v) = min number of arcs on a 
path s to v (assuming not weighted graph) 

BFS computes shortest paths from source 

70

Depth visit

Depth-First Search,  DFS
At each step visits a vertex adjacent to the 
last vertex visited
When no adjacents, backtarck to last vertex 
with adjacents not visited yet



36

71

Pseudo-code (1)

72

Pseudo-code (2)



37

73

Coloring

Initially all white 
Vertex becomes grey when visited first 
time
Black when all adjacents visited

74

Ex (0)
r s t u

v w x y

Source: s

z



38

75

Ex(1)

1

r s t u

v w x y

Visit
s

z

76

Ex(2)

1

r s t u

2

v w x y

Visit w

z



39

77

Ex(3)

1 3

r s t u

2

v w x y

Visit t

z

78

Ex(4)

1 3 4

r s t u

2

v w x y

Visit u

z



40

79

Ex (5)

1 3 4

r s t u

2 5

v w x y

Visit x

z

80

Ex (6)

1 3 4

r s t u

2 5 6

v w x y

Visit y

z



41

81

Ex (7)

1 3 4

r s t u

2 5 6

v w x y

Visit z

7

z

82

Ex (8)

8 1 3 4

r s t u

2 5 6

v w x y

Visit r

7

z



42

83

Ex (9)

8 1 3 4

r s t u

9 2 5 6

v w x y

Visit v

7

z

84

Ex (10)

8 1 3 4

r s t u

9 2 5 6

v w x y

end

7

z



43

85

Complexity

DFS is Θ(V+E).

86

DFS forest

DFS builds a forest foresta DFS, composed by 
one or more DFS trees



44

87

Outline

Definitions
Graph implementation as data structure 
Visiting algorithms
C implementations

88

Lettura da file

Si supponga di voler leggere da un file la 
descrizione di un grafo e di volerla 
memorizzare in una lista di adiacenza.
Occorre definire

Il formato del file
Il formato della rappresentazione in 
memoria.



45

89

File format (one possibility)

First line: number of vertexes n.
Next n blocks, each block:

"*k“ is vertex number
Number of adjacent nodes  to k
List of adjacents

90

Ex
5
*0
2
1
4
*1
4
0
4
3
2

4

0

3

1

2

*2
2
1
3
*3
3
2
1
4
*4
3
0
1
3



46

91

Adjacent list

An array of pointers to VERTEX:
struct vertex{

int nadj;
int *adjlist;

}VERTEX;
Each VERTEX points to array of integers (size == 
numer of adjacents

All arrays dynamically allocated when reading file

92

Ex

4

0

3

1

2

0

1

2

3

4

1

0

1

2

0

4

4 3

3

1 4

1 3

2

4
2
3
3

2



47

93

Graph.h

typedef struct vertex *VERTEXP;
struct vertex{

int nadj;
int *adjlist;

}VERTEX;

94

Readgrf (1)
#include <stdio.h>
#include "grafi.h"
VERTEXP graph;
int nvertex;
int readgrf(char name[])
{ FILE *fin;

int nadj, n, i, j;
if( (fin=fopen( name, "r")) == NULL)
{ printf( "Errore in apertura file %s\n", name);

return(0);   }
fscanf( fin, "%d\n", &nvertex);   
if( (graph = (VERTEXP)malloc( nvertex * sizeof( VERTEX))) == NULL)
{ printf( "Errore in allocazione graph\n");

return( 0);   }



48

95

Readgrf (2)
for( i=0; i<nvertex; i++)
{ fscanf( fin, "*%d\n", &n); /* number of vertex */

if( n != i)
{ printf( "Error in vertex order (%d)\n", n);

return( 0); }
fscanf( fin, "%d\n", &nadj);   
graph[i].nadj = nadj;
if( nadj != 0)
{ if( (graph[i].adjlist = (int *)malloc( nadj * sizeof( int))) == NULL)

{ printf( "Error in  adjlist malloc %d\n", i);
return( 0); }

for( j=0; j<nadj; j++)
fscanf( fin, "%d\n", &(graph[i].adjlist[j]));   

}
}  

96

Readgrf (3)

fclose( fin);
return( 1);

}



49

97

Width visit

FIFO queue with two operations:
Insert
Extract :–1 if empty

Instead of coloring uses a vector visited

98

bfs
void bfs( int root)
{ int vertex, i;

vertex = root; 
visited[vertex] = 1;
while( vertex != -1)
{ visit( vertex);

for( i=0; i<graph[vertex].nadj; i++)
{ if( visited[graph[vertex].adjlist[i]] == 0)

{ insert( graph[vertex].adjlist[i]);
visited[graph[vertex].adjlist[i]] = 1;

}
}
vertex = extract();

}
}



50

99

Depth visit

Again uses visited vector

100

dfs

void dfs(int root)
{ int i;

visited[root] = 1;
visit(root);
for(i=0; i<graph[root].nadj; i++)
{ if(visited[graph[root].adjlist[i]] == 0)

dfs(graph[root].adjlist[i]);
}

}


