
16/10/2012

1

ADTS

2012 10 16

ADTs

• Positional container
– Write(index, value)

– Read(index)

• Container ordered on key
– Write(key, value)

– Read(key)

• First In First Out - Fifo or Queue
– Write(value) or Enqueue(value)

– Read or dequeue

– First arrived in queue is first served

• Last in first out - Lifo or Stack
– Write(value) or push()

– Read or pop()

– Last arrived is served

16/10/2012

2

ADTs

• Hash table

– Write(key, value)

– Read(key)

Common points to adt

• Unbounded

• Implemented with linked list or unbounded array

(only unbounded for hash table)

16/10/2012

3

Queue

• write

• Read

• First arrived is first

served (FIFO. First in

first out)

QUEUE

• Implemented with array

(bounded)

• Implemented with

resizable array

(unbounded)

• Implemented with

positional array

• Implemented with

linked list

16/10/2012

4

Queue

• Implemented with positional container

• Queue

– Queue(value) �
positionalcontainer.writeInLastPosition(value)==

– positionalcontainer.write(last, value)

• Dequeue

– Dequeue() � positionalcontainer.read(0)

Queue – complex/time
Operation Positional

container,

implem w

linked list

Positional

container

implem w

bounded array

Positional

container w

unbounded

array

Circular array,

bounded

Queue

(write(last))

(assuming tail

pointer),

O(1) or constant

O(1) O(1) normally

O(n) if full

O(1)

Dequeue

(read(0)

O(1) O(n elements)

(elemnts are

shifted)

O(n elements)

(elemenst are

shifted)

And also O(n)

when not full

enough

O(1)

16/10/2012

5

Pos container w Unbounded array

• Write(index, value)

– Constant Omega(1)

– O(n) when full

– Average? Constant + 1/S *k * S

• Implementation: initial array size S, n =number of

elements

– Write: if there is space, normal write on array

– If full, malloc a larger (+50%) array a1

– copy old array a on a1

– free (a)

• Read(index)
– Constant Omega(1)

– O(n) when not full enough

– Average? Constant + 1/S *k
* S

• Implementation: initial array size S, n =number of
elements
– Read : normal read on array, constant

– If not full enough (n/S < 0.5)

– malloc a smaller (-50%) array a1

– copy old array a on a1

– free (a)

16/10/2012

6

Queue – complex/space
Positional container,

implem w linked list

Positional container

implem w bounded

array

Positional container

w unbounded array

N = number of

elements

S = size of array

Descriptor = 2

pointers, one integer

= 2*4 + 1* 4 =

12bytes = constant

C1

Nodes:

N * size of node =

N * (size of element

+ pointer)

= C1 + N * size of

node

Descriptor = C2

S * size of element

Pointer – 4 bytes

Integer – 4 bytes

If N << S wastes

memory

Ok if N close to S

‘full’ array scenario

• Linked list

• N= 1M

• Element = 4 bytes

• Pointer = 4 bytes

• Total memory

N * (4 + 4) = 8 Mbytes

• Bounded array

• N = 1 M

• Element = 4bytes

• S = 1.2M

• Total memory

S * 4bytes = 4.8 Mbytes

16/10/2012

7

‘empty’ array scenario

• Linked list

• N= 1K

• Element = 4 bytes

• Pointer = 4 bytes

• Total memory

N * (4 + 4) = 8 Kbytes

• Bounded array

• N = 1 k

• Element = 4bytes

• S = 1.2M

• Total memory

S * 4bytes = 4.8 Mbytes

Complexity analysis

• On time

• On space

• Usually impossible to have best performance both

on time and space, trade off is needed (see

unbounded array, unbounded is superior in time if

memory is wasted)

• No best choice in all cases, depends on scenario

(see memory occupation and full/empty array case)

16/10/2012

8

Stack

• Write or push

• Read or pop

• Implementation

STACK

• Implemented with array

(bounded)

• Implemented with

resizable array

(unbounded)

• Implemented with

positional array

• Implemented with

linked list

16/10/2012

9

Stack with positional container

• Push()

– PositionalContainer.write(afterlast, value)

– Afterlast is integer == number of elements

in positional container

– PositionalContainer.writeAfterLast(value)

• Pop

– positionalContainer.read(last)

– Last is integer == number of elements -1

– PositionalContainer.readLast()

Stack– complex/time
Operation Positional

container,

implem w

linked list

Positional

container

implem w

bounded array

Positional

container w

unbounded

array

array, bounded

Push

(write(last))

Assuming we

have pointer to

tail

O(1)

O(1)

No elements to

shift (cfr queue)

O(1) if not full

O(n) when full

O(1)

Pop

(read(last-1))

O(1) O(1) O(1)

O(n) when

reduce size

because not

enough full

O(1)

16/10/2012

10

Stack – complex/space
Positional container,

implem w linked list

Positional container

implem w bounded

array

Positional container

w unbounded array

N = number of

elements

S = size of array

Descriptor = 2

pointers, one integer

= 2*4 + 1* 4 =

12bytes = constant

C1

Nodes:

N * size of node =

N * (size of element

+ pointer)

= C1 + N * size of

node

Descriptor = C2

S * size of element

Pointer – 4 bytes

Integer – 4 bytes

If N << S wastes

memory

Ok if N close to S

Positional container– complex/time

Operation Positional container, implem w

linked list

Positional container

implem w bounded

array

Positional

container w

unbounded

array

Write (shifts

elements)

Two parts,

finding

element and

adding

Adding is constant, finding no

If pointer to tail

Worst case, write before last:

O(n-1)

Best case, write(0):

Average case: O(n/2)

Finding is constant,

adding no

Worst case: write(0),

O(n)

Best case: write(last),

O(1)

Average case:

write(middle) O(n/2)

If not full same

as bounded

If full, write part

is constant, copy

part is O(n)

Read (cancels

element)

Same as write

Same as write If occupation

index (n/S) ok,

same as

bounded

Else same as

write

16/10/2012

11

Positional– complex/space
Positional container,

implem w linked list

Positional container

implem w bounded

array

Positional container

w unbounded array

N = number of

elements

S = size of array

Descriptor = 2

pointers, one integer

= 2*4 + 1* 4 =

12bytes = constant

C1

Nodes:

N * size of node =

N * (size of element

+ pointer)

= C1 + N * size of

node

Descriptor = C2

S * size of element

Pointer – 4 bytes

Integer – 4 bytes

If N << S wastes

memory

Ok if N close to S

16/10/2012

12

Ordered container– complex/time
Operation Ordered container,

implem w linked

list

Ordered container

implem w

bounded array

Ordered container

w unbounded

array

Write(key)

2 parts, find right

position, insert

Find part

worst (n-1), best

(1), average O(n/2)

Insert part: konst

Binary search not

useful because

requires going

through all

elements anyway

Find part

If no binary search

Same as linked list

Insert part

Average n/2

If binary search

ln2(n)

Insert n/2

Read(key)

No cancels

Find part only

Same as above

If no binary search

n/2

If binary search

ln2(n)

