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Pointers

Pointer-type variables allow accessing  memory in 
an indirect way.

a

Memory

int a;
…
a=10;

a

Memory

int a; int *p;
…
p=&a; *p=10;

p
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Operators * and &

Operator & gets the pointer to the memory 
address of a variable :

p = &x;

Operator * allows accessing the variable 
referenced by the pointer :

*p = 10;
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Operations on pointers

Assignment:

p = q; /* q address is copied in p*/

p = NULL; /* The constant NULL */

Increment/decrement

p = p+5;

p = p-10;

p++;

If p points to an int variable, 
after this statement, p address 
is incremented of 5*sizeof(int), 
as p is a pointer to int (int *)
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Using pointers

Iterate on a vector to initialize to zero

…

int vett[N];

int *p;

…

p=&vett[0];

for (i=0; i<N; i++)

*p++=0;

…
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Pointer to struct

When a variable  p is a pointer to a struct, 

operator -> can be used instead:

p->field_name 

is the same as

(*p).field_name

Same as
(*p).code=0;
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Example

struct student{
int code;
char name[20];
char surname[20];

};
struct student *p;
struct student v[N];
…
p=&v[0];
for (int i=0; i<N, i++)
{ p->code=0; 

p++;

}

42 bytes needed to 
store a single student 

element



Pointers and arrays
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Pointers and Arrays

In C the name of an array variable can be used 
as a pointer to the first array element. 

Arrays are stored in consecutive memory cells.

Pointers and array names can be exchanged.

v[0]

p

v[1] v[2] v[3] v[4]

p+3
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Example

Definitions:

int v[MAX];

int *p;

Initialization:

p = v; same as p=&v[0];

Equivalent forms:

v[0]=10; same as *p=10;

v[10]=25; same as *(p+10)=25;

v[i]=0; same as *(p+i)=0;

*v=27; same as p[0]=27;

*(v+3)=0; same as p[3]=0;

Memory allocation

A C program uses memory 
spaces that are managed 
differently

� Static memory 

� Dynamic memory (or heap)

� Automatic memory (or 
stack)
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Static memory

stack

heap



Memory spaces and variables

� Static memory

� For global variables

� Stack

� For local variables

� For parameters passed to / from functions

� Dynamic memory

� For dynamic variables (not part of 
language but provided through library of 
functions)
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Size of the memory spaces

� Static memory has a fixed size, computed 
by the compiler, and is always used in full

� Heap and stack have a maximum size, are 
initially empty and then filled and released 
as needed. It is therefore possible to 
exceed the space available (stack overflow, 
memory overflow system errors)
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Student dimension is 42
v dimension is 42000 

bytes.
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Static memory

#define MAX 1000

struct student v[MAX];
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Dynamic memory Scenario
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Dynamic memory
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Dynamic Allocation

Two basic functions

� allocation of a memory area

� Malloc, calloc, realloc

� release of a memory area

� free
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malloc

C language provides a system function for 
dynamic memory allocation

void *malloc (int n);

This requires the allocation of a memory area 
of n bytes and it returns the pointer to the 
beginning address of the allocated memory 
area, or NULL if no more memory is available.
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Example

� The following declaration allocates memory space 
for the ‘pointer’  p
� int * p;

� Allocation of memory is made later
� p = (int *) malloc(sizeof(int));

� Then the variable is initialized
� *p = 20;

20
p 0Xffe1

???
p 0Xffe1

p ???
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Trasforms the generic 
pointer to a memory area 
(void *) into an int pointer 

(int *)

Check if memory is 
available and 

allocation.

Example

int *punt;

int n;

…

punt = (int *) malloc(n * sizeof(int));

if (punt == NULL)

{   printf (“Error in allocation\n”);

exit();

}

…

Request allocation of n 
bytes of memory
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Example

Write the procedure allocate

� Reads from keyboard an int n

� Allocates an array of n elements of type 
struct student

� Initializes each element of the array.
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Procedure allocate
int n; /* global variabile */
…
struct student *allocate(void)
{ int i; struct student *p;

scanf("%d", &n);
p=(struct student *) malloc(n*sizeof(struct student));

if (p==NULL)
return (NULL);

for (i=0; i<n; i++)
{ p[i].code=0;

strcpy(p[i].name, "");
strcpy(p[i].surname, "");

}
return (p);

}
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Dynamic Allocation of strings

In C strings are stored as char arrays, using '\0' 
as last character to represent the end of the 
string.

Two ways to store a string made of n chars:

� Use an array statically allocated  of length 
N>n or

� Dynamic allocate an array of n+1 bytes.
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Example

Write the function read which reads from 

keyboard date of n students, and it stores 
them in a previously allocated array.

Fields name and surname 
become pointers.

struct student{

int code;

char *name;

char *surname;

};
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Procedure read

int read (struct student *p)

{ int i, val; char name[MAX], surname[MAX];

for (i=0, i<n; i++)

{ scanf ("%d %s %s\n", &val, name, surname);

p[i].code=val;

p[i].name=strdup(name);

if (p[i].name == NULL)

return (-1);

p[i].surname=strdup(surname);

if (p[i].surname == NULL)

return (-1);

}

return (0);

}
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Procedure strdup

char *strdup (char *str)

{ int len; char *p;

len=strlen (str); /* the string str’s length */

p=(char *)malloc((len+1)*sizeof(char));

if (p==NULL)

return (NULL);

strcpy (p, str);

return (p);

}

28

Data Structure

127
mickey

mouse

25
ken

shiro

312
homer

simpson

2
peter

griffin



29

Release memory

The system function free is used to release 

a memory area:

void free (void *);

It frees the memory zone pointed by the 
parameter, which have been allocated with 
malloc .
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Example

Write the procedure freedom , which 

deallocates the array of n structures passed 
as parameter.

It is also necessary to deallocate the memory 
used by strings within each struct element, 
BEFORE deallocating the array.
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Procedure freedom

void freedom(struct student *p)

{ int i; 

for (i=0; i<n; i++)

{ free (p[i].name);

free (p[i].surname);

}

free (p);

}
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Procedure freedom (vers. 2)

void freedom(struct student *p)

{ int i; struct student *q;

q=p;

for (i=0; i<n; i++)

{ free (q->name);

free (q->surname);

q++;

}

free (p);

}
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Note Well !

� What happens if we call  free(p) 
immediately ?

void freedom(struct student *p) {
free (p);

}

� All strings are no more accessible 
and cannot be deleted anymore 
because we deleted their pointers !!!

� Memory is wasted by these strings 

� If this bad behavior happens many 
times, we will eventually run out of 
memory -> program crashes !!
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