
Pointers and Dynamic

Memory Allocation

Pointers

2

3

Pointers

Pointer-type variables allow accessing memory in
an indirect way.

a

Memory

int a;
…
a=10;

a

Memory

int a; int *p;
…
p=&a; *p=10;

p

4

Operators * and &

Operator & gets the pointer to the memory
address of a variable :

p = &x;

Operator * allows accessing the variable
referenced by the pointer :

*p = 10;

5

Operations on pointers

Assignment:

p = q; /* q address is copied in p*/

p = NULL; /* The constant NULL */

Increment/decrement

p = p+5;

p = p-10;

p++;

If p points to an int variable,
after this statement, p address
is incremented of 5*sizeof(int),
as p is a pointer to int (int *)

6

Using pointers

Iterate on a vector to initialize to zero

…

int vett[N];

int *p;

…

p=&vett[0];

for (i=0; i<N; i++)

*p++=0;

…

7

Pointer to struct

When a variable p is a pointer to a struct,

operator -> can be used instead:

p->field_name

is the same as

(*p).field_name

Same as
(*p).code=0;

8

Example

struct student{
int code;
char name[20];
char surname[20];

};
struct student *p;
struct student v[N];
…
p=&v[0];
for (int i=0; i<N, i++)
{ p->code=0;

p++;

}

42 bytes needed to
store a single student

element

Pointers and arrays

9

10

Pointers and Arrays

In C the name of an array variable can be used
as a pointer to the first array element.

Arrays are stored in consecutive memory cells.

Pointers and array names can be exchanged.

v[0]

p

v[1] v[2] v[3] v[4]

p+3

11

Example

Definitions:

int v[MAX];

int *p;

Initialization:

p = v; same as p=&v[0];

Equivalent forms:

v[0]=10; same as *p=10;

v[10]=25; same as *(p+10)=25;

v[i]=0; same as *(p+i)=0;

*v=27; same as p[0]=27;

*(v+3)=0; same as p[3]=0;

Memory allocation

A C program uses memory
spaces that are managed
differently

� Static memory

� Dynamic memory (or heap)

� Automatic memory (or
stack)

12

Static memory

stack

heap

Memory spaces and variables

� Static memory

� For global variables

� Stack

� For local variables

� For parameters passed to / from functions

� Dynamic memory

� For dynamic variables (not part of
language but provided through library of
functions)

13

Size of the memory spaces

� Static memory has a fixed size, computed
by the compiler, and is always used in full

� Heap and stack have a maximum size, are
initially empty and then filled and released
as needed. It is therefore possible to
exceed the space available (stack overflow,
memory overflow system errors)

14

Student dimension is 42
v dimension is 42000

bytes.

15

Static memory

#define MAX 1000

struct student v[MAX];

16

Dynamic memory Scenario

time

v

v
v

v
v

I
n

it
ia

l
a

ll
o

c
a

ti
o

n

a
ll

o
c
a

ti
o

n

d
e

a
ll

o
c
a

ti
o

n

a
ll

o
c
a

ti
o

n

d
e

a
ll

o
c
a

ti
o

n

Dynamic memory

A.A. 2004/2005 APA - Memoria dinamica 17

18

Dynamic Allocation

Two basic functions

� allocation of a memory area

� Malloc, calloc, realloc

� release of a memory area

� free

19

malloc

C language provides a system function for
dynamic memory allocation

void *malloc (int n);

This requires the allocation of a memory area
of n bytes and it returns the pointer to the
beginning address of the allocated memory
area, or NULL if no more memory is available.

20

Example

� The following declaration allocates memory space
for the ‘pointer’ p
� int * p;

� Allocation of memory is made later
� p = (int *) malloc(sizeof(int));

� Then the variable is initialized
� *p = 20;

20
p 0Xffe1

???
p 0Xffe1

p ???

21

Trasforms the generic
pointer to a memory area
(void *) into an int pointer

(int *)

Check if memory is
available and

allocation.

Example

int *punt;

int n;

…

punt = (int *) malloc(n * sizeof(int));

if (punt == NULL)

{ printf (“Error in allocation\n”);

exit();

}

…

Request allocation of n
bytes of memory

22

Example

Write the procedure allocate

� Reads from keyboard an int n

� Allocates an array of n elements of type
struct student

� Initializes each element of the array.

23

Procedure allocate
int n; /* global variabile */
…
struct student *allocate(void)
{ int i; struct student *p;

scanf("%d", &n);
p=(struct student *) malloc(n*sizeof(struct student));

if (p==NULL)
return (NULL);

for (i=0; i<n; i++)
{ p[i].code=0;

strcpy(p[i].name, "");
strcpy(p[i].surname, "");

}
return (p);

}

24

Dynamic Allocation of strings

In C strings are stored as char arrays, using '\0'
as last character to represent the end of the
string.

Two ways to store a string made of n chars:

� Use an array statically allocated of length
N>n or

� Dynamic allocate an array of n+1 bytes.

25

Example

Write the function read which reads from

keyboard date of n students, and it stores
them in a previously allocated array.

Fields name and surname
become pointers.

struct student{

int code;

char *name;

char *surname;

};

26

Procedure read

int read (struct student *p)

{ int i, val; char name[MAX], surname[MAX];

for (i=0, i<n; i++)

{ scanf ("%d %s %s\n", &val, name, surname);

p[i].code=val;

p[i].name=strdup(name);

if (p[i].name == NULL)

return (-1);

p[i].surname=strdup(surname);

if (p[i].surname == NULL)

return (-1);

}

return (0);

}

27

Procedure strdup

char *strdup (char *str)

{ int len; char *p;

len=strlen (str); /* the string str’s length */

p=(char *)malloc((len+1)*sizeof(char));

if (p==NULL)

return (NULL);

strcpy (p, str);

return (p);

}

28

Data Structure

127
mickey

mouse

25
ken

shiro

312
homer

simpson

2
peter

griffin

29

Release memory

The system function free is used to release

a memory area:

void free (void *);

It frees the memory zone pointed by the
parameter, which have been allocated with
malloc .

30

Example

Write the procedure freedom , which

deallocates the array of n structures passed
as parameter.

It is also necessary to deallocate the memory
used by strings within each struct element,
BEFORE deallocating the array.

31

Procedure freedom

void freedom(struct student *p)

{ int i;

for (i=0; i<n; i++)

{ free (p[i].name);

free (p[i].surname);

}

free (p);

}

32

Procedure freedom (vers. 2)

void freedom(struct student *p)

{ int i; struct student *q;

q=p;

for (i=0; i<n; i++)

{ free (q->name);

free (q->surname);

q++;

}

free (p);

}

33

Note Well !

� What happens if we call free(p)
immediately ?

void freedom(struct student *p) {
free (p);

}

� All strings are no more accessible
and cannot be deleted anymore
because we deleted their pointers !!!

� Memory is wasted by these strings

� If this bad behavior happens many
times, we will eventually run out of
memory -> program crashes !!

127
mickey

mouse

25
ken

shiro

312
homer

simpson

2
peter

griffin

p

