Pointers and Dynamic
Memory Allocation

i Pointers

Pointer-type variables allow accessing memory in

an indirect way.
Memory Memory

LD

P
int a; int a; int *p;
a=10; p=&a; *p=10;

i Operators * and &

Operator & gets the pointer to the memory
address of a variable :

p = &x;

Operator * allows accessing the variable
referenced by the pointer :

*p = 10;

:_L Operations on pointers

Assignment:
P=dq; [* g address is copied in p*/
p = NULL; /* The constant NULL */

Increment/decrement

P =p+5; : : ,

_ _ If p points to an int variable,
p=p-10; § after this statement, p address
p++; is incremented of 5*sizeof(int),
as p is a pointer to int (int *)

i Using pointers

Iterate on a vector to initialize to zero

Int vett[N];
int *p;

p=&vett[0];
for (I=0; I<N; i++)
*p++=0;

:_L Pointer to struct

When a variable p is a pointer to a struct,
operator -> can be used instead:

p->field_name

is the same as

(*p).field_name

i Example
42 bytes needed to

store a single student

struct student{ element

int code;

char name[20];

char surname[20];
3
struct student *p;
struct student v[N];

Same as
0=&[0]. (*p).code=0;
for (int i=0; i<N, i++)
{ p->code=0;

p++;

}

& Pointers and arrays

i Pointers and Arrays

In C the name of an array variable can be used
as a pointer to the first array element.

Arrays are stored in consecutive memory cells.
Pointers and array names can be exchanged.

vio] v[1] v[2] v[3] v[4]

p+3

10

i Example

Definitions:

int v[MAX];

int *p;

Initialization:

p =V, same as p=&v[0];
Equivalent forms:

v[0]=10; same as *p=10;
v[10]=25; same as *(p+10)=25;
v[i]=0; same as *(p+1)=0;
*v=27; same as p[0]=27;
*(v+3)=0; same as p[3]=0;

11

i Memory allocation

A C program uses memory
spaces that are managed
differently

o Static memory stack
o Dynamic memory (or heap)

o Automatic memory (or
stack)

heap

12

:_L Memory spaces and variables

o Static memory

m For global variables
o Stack

m For local variables

m For parameters passed to / from functions
o Dynamic memory

m For dynamic variables (not part of
language but provided through library of
functions)

13

i Size of the memory spaces

m Static memory has a fixed size, computed
by the compiler, and is always used in full

m Heap and stack have a maximum size, are
initially empty and then filled and released
as needed. It is therefore possible to
exceed the space available (stack overflow,
memory overflow system errors)

14

i Static memory

#define MAX 1000
struct student v[MAX];

Student dimension is 42
v dimension is 42000
bytes.

15

i Dynamic memory Scenario

>

time

Initial
allocation
allocation

deallocation
allocation
deallocation

16

i Dynamic memory

A.A. 2004/2005 APA - Memoria dinamica

17

i Dynamic Allocation

Two basic functions

m allocation of @ memory area
= Malloc, calloc, realloc

m release of @ memory area
= free

18

i malloc

C language provides a system function for
dynamic memory allocation

void *malloc (int n);

This requires the allocation of a memory area
of n bytes and it returns the pointer to the

beginning address of the allocated memory
area, or NULL if no more memory is available.

19

‘ Example
m [he following declaration allocates memory space

for the *pointer’ p P [270
mint * p;

m Allocation of memory is made later
mp = (int *) malloc(sizeof(int));

m Then the variable is initialized

= *p = 20;

20

Request allocation of n
i Exam ple bytes of memory
int *punt;
int n;

punt = (int *) malloc(n * sizeof(int));
if (punt == NULL)
{ printf (“Exror in allocati

Trasforms the generic
pointer to a memory area
(void *) into an int pointer

(int *)

Check if memory is
available and
allocation.

21

i Example

Write the procedure allocate

m Reads from keyboard an int n

m Allocates an array of n elements of type
struct student

m Initializes each element of the array.

22

Procedure allocate

int n; [* global variabile */

struct student *allocate(void)
{ inti; struct student *p;
scanf("%d", &n);
p=(struct student *) malloc(n*sizeof(struct student));
if (p==NULL)
return (NULL);
for (i=0; i<n; i++)
{ pl[i].code=0;
strepy(p[i].name, ™);
strepy(p[i].surname, ");

}

return (p);

23

i Dynamic Allocation of strings

In C strings are stored as char arrays, using '\0'
as last character to represent the end of the

string.
Two ways to store a string made of n chars:

m Use an array statically allocated of length
N>n or

m Dynamic allocate an array of n+1 bytes.

24

i Example

Write the function read which reads from

keyboard date of n students, and it stores
them in a previously allocated array.

struct student{

int code;
char *name;
char *surname; \
3 Fields name and surname

become pointers.

25

i Procedure read

int read (struct student *p)
{ inti, val; char name[MAX], surname[MAX];
for (i=0, i<n; i++)

{ scanf ("%d %s %s\n", &val, name, surname);
p[i].code=val;
p[i].name=strdup(name);
if (p[i].name == NULL)

return (-1);
p[i].surname=strdup(surname);
if (p[i].surname == NULL)
return (-1);
}

return (0);

}

26

:_L Procedure strdup

char *strdup (char *str)
{ intlen; char *p;
len=strlen (str); /* the string str’s length */
p=(char *)malloc((len+1)*sizeof(char));
if (p==NULL)
return (NULL);

strcpy (p, str);
return (p);

27

i Data Structure

127
» mickey
* mouse
25
» ken
* shiro
312
> homer
> simpson
2
> peter
> griffin

28

:_L Release memory

The system function f r ee is used to release
a memory area:

void free (void *);

It frees the memory zone pointed by the

parameter, which have been allocated with
malloc .

29

i Example

Write the procedure freedom , which
deallocates the array of n structures passed
as parameter.

It is also necessary to deallocate the memory
used by strings within each struct element,
BEFORE deallocating the array.

30

i Procedure freedom

void freedom(struct student *p)
{ inti;
for (i=0; i<n; i++)
{ free (p[i].name);
free (p[i].surname);

}
free (p);

}

31

i Procedure freedom (vers. 2)

void freedom(struct student *p)
{ inti; struct student *q;
a=p;
for (i=0; i<n; i++)
{ free (g->name);
free (g->surname);
q++;
}
free (p);

}

32

:_L Note Well | / P

127

m What happens if we call free(p)
immediately ?

» mickey

* mouse
void freedom(struct student *p) {
free (p);
} » ken
.) * shiro
m All strings are no more accessible
and cannot be deleted anymore T
because we deleted their pointers !!! m——
> sim
m Memory is wasted by these strings

m If this bad behavior happens many
times, we will eventually run out of
memory -> program crashes !!

—| peter

>| griffin

33

