
Advanced Programming Lists

1

Lists

2

Intro

A list is a data structure based on usage of
pointers and dynamic allocation of memory.

With respect to other ADT (like arrays), a list:

 provides more flexibility in memory usage

 but it is less efficient.

Advanced Programming Lists

2

3

Definition

A list is an ADT where:

 Each element is allocated/deallocated
separately

 Each element is linked to the others and
accessible through pointers

 There is a variable (called head) which
refers to the first element.

4

Simple List

Data Data Data Data

head

Advanced Programming Lists

3

5

Linked List Properties

 In every moment only the necessary
memory is effectively used

 Accessing to an element may require to
access in sequence to all elements of the
list

6

Variants

Other variants of linked lists, are:

 Circular lists, where last element points to
the first element (the head of the list)

Double-pointer Lists where each element
contains both a pointer to the previous
element and a pointer to the following
element.

Advanced Programming Lists

4

7

Double Pointer Lists

head

Data Data Data Data

8

Implementation in C

/* element definition */

typedef struct list_el{

int code;

char *name;

char *surname;

struct list_el * next;

} LIST_ELEMENT;

/* head pointer definition */

LIST_ELEMENT * head = NULL;

Advanced Programming Lists

5

9

Head Insertion

…

LIST_ELEMENT * p;

…

p=(LIST_ELEMENT *) malloc(sizeof(LIST_ELEMENT));

if (p==NULL)

ERROR

p->code = val;

p->name = strdup(name);

p->surname = strdup(surname);

p->next = head;

head = p;

…

10

Before Head Insertion

Data Data

NULL

Data

head

Advanced Programming Lists

6

11

After Head Insertion

Data Data Data

NULL

Data

head

12

Insert function
int insert (LIST_ELEMENT ** t, int val, char *name,

char *surname)

{ LIST_ELEMENT *p;

p=(LIST_ELEMENT *) malloc(sizeof(LIST_ELEMENT));

if (p==NULL)

return (-1);

p->codee=val;

p->name = strdup(name);

p->surname = strdup(surname);

p->next=*t; /* head is *t */

*t=p;

return 0;

}

Advanced Programming Lists

7

13

Caller Program

…

LIST_ELEMENT * head;

int ret, val;

char name[MAX], surname[MAX];

…

scanf ("%d, %s %s\n", &val, name, surname);

ret=insert (&head, val, name, surname);

if (ret == -1)

ERRORE

14

Search

LIST_ELEMENT * search (LIST_ELEMENT *t, int val)

{ LIST_ELEMENT *p;

p=t;

while (p != NULL)

{ if (p->code == val)

return (p);

p = p->next;

}

return p;

}

Advanced Programming Lists

8

15

Caller Program

…

LIST_ELEMENT *head, *p;

int val;

…

scanf ("%d\n", &val);

p= search (head, val);

if (p == NULL)

printf ("Element not found \n");

else

printf ("%d %s %s\n", p->code, p->name, p->surname);

…

16

Sorted Lists

If the insertion procedure puts the new element
in the right position, then the list can be kept
sorted (with respect to one field of the struct).

In this way is possible to:

 Simplify search operations

 Access to elements in an ordered way.

Advanced Programming Lists

9

17

Insertion in a sorted list
int insert_sorted (LIST_ELEMENT **t, int val, char *name,

char *surname)

{ LIST_ELEMENT *p, *q;

/* allocate new element */

p= (LIST_ELEMENT *) malloc(sizeof(LIST_ELEMENT));

if (p==NULL)

return (-1);

p->code=val;

p->name = strdup(name);

p->surname = strdup(surname);

q = *t;

/* head insertion */

if((q == NULL) || (q->code > val))

{ p->next = *t;

*t = p;

return 0;

}

18

Insertion in a sorted list
/* insertion in the middle of the list */

while(q->next != NULL)

{ if(q->next->code > val)

{ p->next = q->next;

q->next = p;

return 0;

}

q = q->next;

}

/* insertion in the end of the list */

p->next = NULL;

q->next = p;

return 0;

} Data Data

q

Advanced Programming Lists

10

19

Delete

Deleting an element usually requires:

The search operation, which produces a
pointer to the element to be canceled

The actual delete operation which requires:

 the pointer to the element to be canceled

and the pointer to the preceding element.

20

Delete

int delete(LIST_ELEMENT **t, int val)

{ LIST_ELEMENT *p, *q;

q = *t;

if (q==NULL) /* empty list */

return (-1);

/* head delete */

if (q->code == val))

{free (q->name);

free (q->surname);

*t = q->next;

free (q);

return 0;

}

Advanced Programming Lists

11

21

Delete

/* delete in the middle or in the end of list */

while(q->next!= NULL)

{ if(q-> next->code == val)

{ q->next = q->next->next;

free (q->next->name);

free (q->next->surname);

free (q->next);

return 0;

}

q = q->next;

}

}

22

Complexity

Insertion in the head of the list has a
complexity O(1).

All other operations on lists have O(n)
complexity, as in the worst case they
requires visiting all the list elements.

Advanced Programming Lists

12

23

Guards

It may be convenient to add to the list some
fake elements (called guards) which allow

Simplifying code for list management

Improving efficiency, without changing its
worst-case complexity.

24

Guards: unsorted lists

In this case 2 guards are used (one in the
head, one in the tail).

Guards may simplify code as it is no more
necessary to consider as separate cases
insertion/deletion in head and tail.

Advanced Programming Lists

13

25

Example

Data Data

NULL

head

Guard Guard

26

Guards: Ordered Lists

In this case guards contain the minimum and
maximum value that can be stored.

In this way

 Code is more simple (insert/delete in head/tail are
no more separated cases)

 Execution is faster , as test at the end of the list is
now useless.

Advanced Programming Lists

14

27

Example

MIN_INT Data Data

NULL

MAX_INT

head

28

Each iteration contains
only one test

Each iteration contains
two tests

Faster Algorithm

LIST_ELEMENT * search (LIST_ELEMENT *t, int val)

{ LIST_ELEMENT *p;

p=t;

while (p!=NULL)

{ if (p->code==val)

return p;

p=p->next;

}

return p;

}

{ LIST_ELEMENT *p;

p=t;

while (p->code < val)

p=p->next;

if (p->code == val)

return p;

else

return NULL;

}

