Problem Definition

Input:
- A sequence of \(n \) elements \(<a_1, a_2, ..., a_n> \)

Output:
- A permutation \(<a'_1, a'_2, ..., a'_n> \) of such elements, so that \(a'_1 \leq a'_2 \leq ... \leq a'_n \)
Types of Ordering

- Internal Ordering
 - All the elements to be ordered are in main memory
 - Direct access to all elements

- External Ordering
 - Elements cannot be loaded all in memory at the same time
 - It is necessary to act on elements stored on a file
 - Usually, sequential access

Practical observations

- Elements to be ordered are usually structures (struct) made of many variables (fields)
- The key of such structure is usually one field (or a value calculated from one or more fields)
- Remaining fields are additional data but useless for ordering
- Ordering is made for increasing values of the key
Example

```c
struct student {
    int id;
    char surname[30];
    char name[30];
    int grade;
} ;

struct student class[100] ;
```

Example

```c
struct student {
    int id;
    char surname[30];
    char name[30];
    int grade;
} ;

struct student class[100] ;
```

Ordering by id

Ordering by name and surname (key = concatenation name and surname)

Ordering by grade (repeated values)
Stability

A sorting algorithm is called *stable* whenever, even if there are elements with the same value of the key, in the resulting sequence such elements appear in the *same order* in which they appeared in the initial sequence.

Simple Assumption

During the study of sorting algorithms there are usually arrays of n integer values:

```c
int A[n];
```
Algorithms

There are many sorting algorithms with different complexity:

- **O(n²)**: simple, iterative
 - Insertion sort, Selection sort, Bubble sort, ...

- **O(n)**: only applicable in particular cases
 - Counting sort, Radix sort, Bin (or Bucket) sort, ...

- **O(n log n)**: more complex, recursive
 - Merge sort, Quicksort, Heapsort

Insertion sort

Already sorted

![Insertion sort diagram](image-url)

Not considered yet

Move forward all the elements so that v[I] > v[j]
Pseudo-code

Insertion-Sort

1. for $j \leftarrow 2$ to length[A]
2. do
3. $key \leftarrow A[j]$
4. $i \leftarrow j - 1$
5. while $i > 0$ AND $A[i] > key$
6. do
7. $A[i+1] \leftarrow A[i]$
8. $i \leftarrow i - 1$
9. end while
10. $A[i+1] \leftarrow key$

Implementation in C

```c
void InsertionSort(int A[], int n)
{
    int i, j, key;
    for(j=1; j<n; j++) {
        key = A[j];
        i = j - 1;
        while ( i >= 0 && A[i] > key ) {
            A[i+1] = A[i];
            i--;
        }
        A[i+1] = key;
    }
}
```
From pseudo-code to C

Note well:
- In C, array indexes are from 0 to n-1, while pseudo-code use ranges from 1 to n.
- Indentation of code is useful but remember braces to identify blocks { ... }

Complexity

Number of comparisons:
- $C_{\text{min}} = n-1$
- $C_{\text{avg}} = \frac{1}{4}(n^2+n-2)$
- $C_{\text{max}} = \frac{1}{2}(n^2+n)-1$

Number of data-copies
- $M_{\text{min}} = 2(n-1)$
- $M_{\text{avg}} = \frac{1}{4}(n^2+9n-10)$
- $M_{\text{max}} = \frac{1}{2}(n^2+3n-4)$

Best case: array already ordered
Worst case: array ordered inversely

$C = O(n^2)$, $M = O(n^2)$
$T(n) = O(n^2)$
$T(n) \text{ non è } \Theta(n^2)$
$T_{\text{worst case}}(n) = \Theta(n^2)$
Other quadratic algorithms

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Min</th>
<th>Average</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insertion Sort</td>
<td>(C = n - 1)</td>
<td>((n^2 + n - 2)/4)</td>
<td>((n^2 - n)/2 - 1)</td>
</tr>
<tr>
<td>Selection Sort</td>
<td>(C = (n^2 - n)/2)</td>
<td>((n^2 - n)/2)</td>
<td>((n^2 - n)/2)</td>
</tr>
<tr>
<td>Bubble Sort</td>
<td>(C = (n^2 - n)/2)</td>
<td>((n^2 - n)/2)</td>
<td>((n^2 - n)/2)</td>
</tr>
</tbody>
</table>

Execution Time (ms)

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Ordered</th>
<th>Random</th>
<th>Inversely Ordered</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct Insertion</td>
<td>12</td>
<td>23</td>
<td>144</td>
</tr>
<tr>
<td>Binary Insertion</td>
<td>56</td>
<td>125</td>
<td>1327</td>
</tr>
<tr>
<td>Direct Selection</td>
<td>489</td>
<td>1907</td>
<td>695</td>
</tr>
<tr>
<td>Bubble sort</td>
<td>540</td>
<td>2165</td>
<td>1492</td>
</tr>
<tr>
<td>Bubble sort with change notification</td>
<td>5</td>
<td>8</td>
<td>5931</td>
</tr>
<tr>
<td>Shaker sort</td>
<td>5</td>
<td>9</td>
<td>1619</td>
</tr>
<tr>
<td>Shell sort</td>
<td>58</td>
<td>116</td>
<td>157</td>
</tr>
<tr>
<td>Heap sort</td>
<td>116</td>
<td>235</td>
<td>492</td>
</tr>
<tr>
<td>Quick sort</td>
<td>31</td>
<td>69</td>
<td>226</td>
</tr>
<tr>
<td>Merge</td>
<td>99</td>
<td>234</td>
<td>99</td>
</tr>
</tbody>
</table>

\(n = 256 \) | 512 | 256 | 512 | 256 | 512
Impact of data

<table>
<thead>
<tr>
<th></th>
<th>Ordinati</th>
<th>Disordinati</th>
<th>Inversamente Ordinati</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inserimento diretto</td>
<td>12</td>
<td>46</td>
<td>366</td>
</tr>
<tr>
<td>Inserimento binario</td>
<td>56</td>
<td>76</td>
<td>373</td>
</tr>
<tr>
<td>Selezione diretta</td>
<td>489</td>
<td>547</td>
<td>509</td>
</tr>
<tr>
<td>Bubblesort</td>
<td>540</td>
<td>610</td>
<td>1026</td>
</tr>
<tr>
<td>Bubblesort con segnalatore</td>
<td>5</td>
<td>5</td>
<td>1104</td>
</tr>
<tr>
<td>di scambio</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shakersort</td>
<td>5</td>
<td>5</td>
<td>961</td>
</tr>
<tr>
<td>Shellsort</td>
<td>58</td>
<td>186</td>
<td>961</td>
</tr>
<tr>
<td>Heapsort</td>
<td>116</td>
<td>264</td>
<td>246</td>
</tr>
<tr>
<td>Quicksort</td>
<td>31</td>
<td>55</td>
<td>60</td>
</tr>
<tr>
<td>Fusione *</td>
<td>99</td>
<td>196</td>
<td>195</td>
</tr>
</tbody>
</table>

2 byte 2 byte 2 byte
16 byte 16 byte 16 byte

Counting sort

It cannot be applied in general, as it is based on this hypothesis:

- The n elements to be ordered are integer numbers between 1 and k, with k integer.

With such hypothesis, if $k = O(n)$, then the algorithm’s complexity is just $O(n)$.
Basic Idea

Find out, for each element \(x \), how many elements of the array are less than \(x \).
Such information allows to put \(x \) directly in the final position in the array.

Data Structure

- Three arrays are needed:
 - Initial array: \(A[1..n] \)
 - Final array: \(B[1..n] \)
 - Temporary Array: \(C[1..k] \)
- Array \(C \) keeps track of number of elements of \(A \) having a certain value: \(C[i] \) is the number of elements of \(A \) equals to \(i \).
- Sum of the first \(i \) elements of \(C \) defines the number of elements of \(A \) whose values is \(\leq i \).
Pseudo-code

For each j, \(C[A[j]] \) represents the number of elements less than or equals to \(A[j] \), and then it is the final position of \(A[j] \) in \(B \):

The correction \(C[A[j]] \leftarrow C[A[j]] - 1 \) is needed to handle duplicate elements.
Example (n=8, k=6)

A
3 6 4 1 3 4 1 4
C
2 0 2 3 0 1
C
2 2 4 7 7 8

for \(j \leftarrow 1 \) to length[A]
 do \(C[A[j]] \leftarrow C[A[j]] + 1 \)

for \(i \leftarrow 2 \) to \(k \)
 do \(C[i] \leftarrow C[i] + C[i - 1] \)

for \(j \leftarrow length[A] \) downto 1
 do \(B[C[A[j]]] \leftarrow A[j] \)
 \(C[A[j]] \leftarrow C[A[j]] - 1 \)

Example (2)

A
3 6 4 1 3 4 1 4
B
1 1 1 1 1 1 1 1
B
1 1 1 1 1 1 1 1
B
1 1 1 1 1 1 1 1
B
1 1 1 1 1 1 1 1
B
1 1 1 1 1 1 1 1
B
1 1 1 1 1 1 1 1
B
1 1 1 1 1 1 1 1
B
1 1 1 1 1 1 1 1

for \(j \leftarrow length[A] \) downto 1
 do \(B[C[A[j]]] \leftarrow A[j] \)
 \(C[A[j]] \leftarrow C[A[j]] - 1 \)

j=8
C
2 2 4 6 7 8
j=7
C
1 2 4 6 7 8
j=6
C
1 2 4 5 7 8
j=5
C
1 2 3 5 7 8
j=4
C
0 2 3 5 7 8
j=3
C
0 2 3 4 7 8
j=2
C
0 2 2 4 7 7
j=1
Complexity

- 1-2: Initialization of C: $O(k)$
- 3-4: Calculate C: $O(n)$
- 6-7: Sum in C: $O(k)$
- 9-11: Copy in B: $O(n)$

Total complexity is $O(n+k)$.
Algorithm is useful only when $k=O(n)$, because the resulting complexity is $O(n)$.

Note

The condition of applicability of the algorithm can be extended in this way:
- The key field of n elements to be ordered has a limited number of possible values k.
Bubble Sort

- In each cycle compare every couple of consecutive elements and if they are not ordered, then swap (exchange) them.
- Repeat this process N times and all the elements will be ordered
- Complexity is $O(n^2)$
- Optimization: if during last cycle there are no swaps, then the elements are already sorted

Bubble sort in C

```c
void BubbleSort(int A[], int n) {
    int i, j, t;
    for(i=1; i<n-1; i++) {
        for(j=1; j<n-1; j++) {
                t = A[j] ;
                A[j] = A[j+1];
                A[j+1] = t;
            }
        }
    }
}
```
Bubble sort (optimized) in C

```c
void BubbleSort2(int A[], int n) {
    int i, j, t, repeat = 1;
    while (repeat) {
        repeat = 0; /* if no swaps remains 0 -> exit while*/
        for (j = 1; j < n - 1; j++) {
            if (A[j] > A[j + 1]) {
                t = A[j]; /* swap elements*/
                A[j] = A[j + 1];
                A[j + 1] = t;
                repeat = 1;
            }
        }
    }
}
```