
Software Engineering

Books or notes are not allowed.
Write only on these sheets. Concise and readable answers please.

Surname, name, matricola ___

Restaurant management - wireless
In the past restaurants were managed with paper, except for payment, where often a register was
used. Now more and more restaurants are managed using wireless devices. Each waiter has a
wireless device (ex a modified PDA with wi-fi connection), the kitchen has one or more PCs, the
acceptance desk has a PC too, all are connected.

Key functions to be considered are:

• Order from waiter to kitchen: the waiter takes orders from a table and sends them to the
kitchen

• Modify order from waiter to kitchen: the waiter takes changes from a table and sends them
to the kitchen

• Inquiry: the waiter asks about the status of an order
• Dish from kitchen to waiter: the waiter should be alarmed to collect a dish ready to be

dispatched to the right table
• Checkout: compute the amount due by a table, manage payment, issue receipt. Payment by

the customer could be made at the table (the waiter handles the credit card or cash and the
receipt) or at a register.

Consider also that usually restaurants, unless very small, are divided in zones allocated to one or
more waiters. Besides, large restaurants could have many exits and many registers for payment.
In the following you should analyze and model the application that supports a ‘wireless’ restaurant.

1 (14 points) – a. Define the context diagram (including relevant interfaces)

System

Waiter

Cashier

Kitchen personnel

Reception clerk

Restaurant management system

Credit card system

Interfaces
With Cashier, Kitchen personnel, Reception clerk: GUI on PC
With Waiter: GUI on PDA
With credit card system: internet connection and secure protocol

List the requirements in tabular form
ID Type

(Functional
Non
Functional)

Description

1 F Create order, associate order to table
2 F add dish to order
3 F Cancel dish from order
4 F Send order to kitchen
5 F Communicate dish for order is ready, alert waiter
6 F Manage payment for order
7 F Issue receipt for payment
8 F Show status of tables (busy, free)
9 F Change status of table (free to busy, busy to free)
10 F Show status of dishes of order
11 NF The connection with the credit card system should be secure
12 NF The restaurant wi-fi network should be protected from unauthorized access
13 NF The waiter should be able to use the system after max 2 hours on the job training

The requirements should be for the management system (software + hardware), not for the
restaurant (so requirements like The waiter takes an order is not appropriate, the requirement
should be like R1 (the system can create an order ..)

Define the application model (UML class diagram) for the application

Restaurant management system

Table

+ID

Order

+ID
+amount
+date

Dish

+name
+price

Menu

1..*

*

*

**

Waiter

+name
+ID

Zone

+ID

*

is managed by

*

This model shows the key concepts in the problem (glossary) that typically become classes in the
software. The Order (associated to a table, and listing a number of dishes) is essential (traditionally
a piece of paper with the dishes ordered and a table number).

Define the system design model (UML class diagram)

PDA (for waiter)
PC (Kitchen)

PC (reception)PC (cashier)

WIFI system

Restaurant managemnt system

*

*
*

*

Define one scenario describing an order from table to kitchen
Precondition: no order O for table T
Postcondition: order O for table T received by kitchen
Step Description Req

ID
1 Waiter creates order O and associates to table T 1
2 Waiter adds dish to order 2
3 Waiter adds dish to order 2
4 Waiter adds dish to order 2
5 Waiter cancels dish from order 3
6 Waiter sends order O to kitchen 4

The scenario was only about ‘order from table to kitchen’ (not also what follows afterwards).
Doing it, it becomes clear, once more, the need for classes Order, Dish, and Table. The scenario
must be consistent with requirements (right column). And must contain one action per line (not
many).
This means that a requirement like ‘take order’ (that includes R1 and R2 and R3) is too big.

2 (8 points) -Define black box tests for the following function

The function returns the discount to be applied to customers of the restaurant in function of how
much they spend and how many times they have been to the restaurant in the week.

int computeDiscount(int amount, int nTimesInWeek);
applying the following rules
if amount is > 100, discount rate = 10%
if amount is > 200, discount rate = 20%
if amount is > 100, and nTimesInWeek >1, discount rate = 15%
if amount is > 200, and nTimesInWeek >2, discount rate = 25%

ex. computeDiscount(150, 0) � 15
 computeDiscount(250, 0) � 50
 computeDiscount(120, 2) � 18

Criterion Valid/in

valid
Test case Boundary condition

Amount nTimesInWeek
[minint, 0[- Invalid T(-10, 1; err) Amount = minint, 0, 1
[0, 101[[Minint, 0[Invalid T(10, -10; err) Amount = 100, 101;

 nTimesInWeek = minint,
0,1,2,3,maxint

[0, 1] Valid T(10, 0; 0)
]1, 3[Valid T(10, 2; 0)
[3, Maxint] Valid T(10, 4; 0)

[101 , 201[[Minint, 0[Invalid T(150, -10; err) Amount = 200, 201
nTimesInWeek = minint,
0,1,2,3,maxint

[0, 1] Valid T(150, 0; 15)
]1, 3[Valid T(150, 2; 15)
[3, Maxint] Valid T(150, 4; 22.5)

[201 , maxint] [Minint, 0[Invalid T(1000, -10; err) Amount = maxint
nTimesInWeek = minint,
0,1,2,3,maxint

[0, 1] Valid T(1000, 0; 200)
]1, 3[Valid T(1000, 2; 200)
[3, Maxint] Valid T(1000, 4; 250)

3 (6 points) – For the following function define the control flow graph, and define test cases to
obtain the highest possible node coverage, edge coverage, multiple condition coverage, loop
coverage.
For the test cases, write only the input value.
1 double computeDiscount(float amount, int nTimesInWeek){
2 double discountRate=0;
3 int rangeAmount =0;
4 int rangeWeek =0;
5 if (amount <= 100) rangeAmount =1;
6 if (amount <= 200) rangeAmount =2;
7 if (amount > 200) rangeAmount =3;
8
9 if (nTimesInWeek <= 1) rangeWeek =1;
10 else if (nTimesInWeek <= 2) rangeWeek =2;
11 if (nTimesInWeek > 2) rangeWeek =3;
12
13 if (rangeAmount == 1 && rangeWeek == 1) discountRate =0;
14 if (rangeAmount == 2 && rangeWeek == 1) discountRate =0.1;
15 if (rangeAmount == 2 && rangeWeek == 2) discountRate =0.15;
16 return amount * discountRate;
 }
Coverage type Feasibility (Y/N) Coverage obtained (%) and test cases
Node Y, considering the graph

below there are 20 nodes to
cover

3 test cases to cover 5a, 6a, 7a ex (50, -)
(150,-) (250 -)
3 test cases to cover 9a 10a 11a
ex (-, 1) (-, 2) (-, 3)
so with these test cases
 T1(50,1) T2(150, 2) T3(250, 3)
We cover all nodes until 11

T1 covers 13, 13a 14 15
T2 covers 13 14 15, 15a
T3 covers 13 14 15
We need a test to cover 14a, T4(150,1)
overall with these 4 test cases it is
possible to obtain 100% node coverage

Edge Y there are 28 edges to cover T1 T2 T3 T4 cover all edges
Multiple condition
(line 13)

Y, 4 test cases T1 covers T,T
T2 covers F,F
T3 covers F,F
T4 covers F T
We need to cover TF T5(50,1)

Loop No loops
Path Partially There are 8 (ifs until line 8)x3(if line 9 to

10) x16(ifs line 11 to 15) 384 = paths. So
in a finite time it is conceivable to write
384 test cases. However many of these
paths are unfeasible because of
dependencies between conditions in ifs.

Flow graph:

4 (1 points) – Items A and B are under configuration in subversion. User U1 performs a commit on
A with revision 121. Next user U2 performs a commit on B. What are the revision numbers?

Revision number for A: __122__ Revision number for B:______122___
The commit on B changes revision number to ALL items in the repository

5 (1 points) – Describe how to implement a baseline in Subversion
Using tags

5

6

7

7a rangeAmount=3

1,2,3,4

6a rangeAmount = 2

5a rangeAmount=1

9

9a rangeWeek = 1 10

10a rangeWeek = 2

11

13

11a rangeWeek = 3

13a discountRate=0
14

14a discountRate=0.1

15

15a discountRate=0.15

16

6 (1 points) – In the context of software design, mention an example of tradeoff between non
functional properties of a system.
Efficiency (speed) tipically requires a tradeoff with security.

7 (1 points) – What is the difference between fault and failure?
A failure is external evidence for the user of a malfunction. A fault is the internal cause of the
failure. Not all faults cause failures.

