
Software Engineering

Elevator system
Consider an elevator system, such as the one in Politong building in Siping campus. It is composed
of E elevators, side by side, in one building, serving F floors. At each floor there are buttons to call
elevators, displays to show the position of elevators, and doors. Inside each elevator there are
buttons and displays too. Each elevator is moved by one engine. All these elements are connected
to a computer that controls everything.

In the following you should analyze and model the elevator system.

1 (14 points) – a. Define the context diagram and interfaces

Elevator system

User

Electric power supply

Maintenance crew

Emergency crew

Emergency support

Actor Logical interface Physical interface
User Buttons, displays on floors

and on elevators
Maintenance crew GUI menus and windows to

analyze and change state of
system

Screen and keyboard

Electric Power supply 220V , 20A, 3 poles
Emergency crew Procedures to switch on /

off / operate the system in
case of emergency

Specific buttons and
switches to power off / on

Emergency support Procedure to ask
intervention in case of
emergency

BJ11 port (public telephone
network)

Remark that an elevator system typically comprises the elevators (the cabins going up and down),
all displays and buttons, the engines to move the elevator, the (computer based) controller. Those
components are shown in the system design diagram. It is possible to define a different context
diagram (for instance with only the controller inside, and all the rest outside), but then the relative
system design is different (contains only the computer and hardware software interfaces to
engines, displays etc).

List the requirements in tabular form
ID Type

(Functional
Non
Functional)

Description

1 F Call an elevator at floor F (request on button from user at floor F)
2 F Compute mission M (include choice of what elevator to send)
3 F Request elevator E to floor F (request from user inside Elevator)
4 F Show position of Elevator E inside Elevator (manage display in elevator)
5 F Show position of Elevator E at floor F (manage display at floor F)
6 F Open doors for Elevator E
7 F Close doors for Elevator E
8 F Open doors at floor F, elevator E
9 F Close doors at floor F, elevator E
10 F Send mission M to elevator E
11 F Send request for emergency intervention
12 F Get / set status of elevator for maintenance tasks
 NF Performance – update displays in <1 sec

Business rules
1 floor doors must be closed when elevator is not at floor
2 elevator doors should be closed when elevator travels
3 missions should be defined to minimize waiting time for users

Define the glossary (UML class diagram) for the system

Elevator System

Floor

+id

Elevator

+id

+goUp()
+goDown()
+stopAtFloor()

Elevator Request
Mission

+direction: {up, down}
+nextStop

*
*

from

is at

0..*

Floor stop request request made by user in elevator to stop at certain floor

request to have an elevator made

by a user outisde an elevator,

at a certain floor command from controller to elevator

to proceed to a certain floor, up or down

There are many elevators (see multiplicity). Other key concepts are the floor, the position of an
elevator at a certain floor, the request of an elevator from a floor (request from outside), the request
to bring an elevator to a floor (command from inside elevator). The mission abstracts the command
given to an elevator by the controller. Deciding the missions is the key function of the system. It
requires to know the current status (positions or current missions of all elevators, all requests from
inside and outside) and in function of it to decide the next missions. A flexible elevator system can
change missions in real time.

Define the system design model (UML class diagram)

Elevator System

Elevator

+id

+goUp()
+goDown()
+stopAtFloor()

Floor

+id

FloorButton

+id

*

PositionDisplayRequestButton ElevatorPositionDisplay

1..*
1..*

ElevatorDoor

+open()
+close()

FloorDoor

+open()
+close()

there are two doors, that must

be controlled consistently,

one on the elevator and one

at each floor

here is the control logic to move elevators

in function of requests and current position

As explained, the system design shows the components of the system (the shopping list of parts).
While the glossary shows the key concepts.
It is also possible to merge the two class diagrams in one, loosing some clarity (classes Elevator
system, Elevator, Floor are common, plus Elevator request, Mission, Floor stop request from
Glossary, Floor Door, Elevator Door, buttons and display from System design)
There is no Computer class. It could be added in the System design, as part of Elevator System.

Define one scenario describing an elevator travel from floor x to y
Precondition: elevator 1 is free and standing at floor x. user requests elevator from floor y.
elevator 2 is at floor z
Postcondition: elevator 1 is at floor y
Step Description Req

ID
1 Call elevator at floor Y 1
2 Compute mission M (elevator 1 from x to y) (elevator 2 is not chosen either

because in use or because farther than 1)
2

3 Close doors on elevator 1 7
4 Close doors at floor x, elevator 1 9
5 Send mission M to elevator 1 10
6 When elevator1 is at floor y Open doors on elevator 1 6
7 Open doors on floor y, elevator 1 8
8

2 (8 points) -Define black box tests for the following function

The function implements an alarm on a clock

int alarm(int hour, int minute, int alarmHour, int alarmMinute)

where hour, minute represent the current time, alarmHour, alarmMinute represent the time of the
alarm; the function returns 1 if current time == alarm time, 0 otherwise

 ex
 alarm(10, 20, 10, 30) � 0
 alarm(10, 20, 10, 20) � 1

hour min alarmHour alarmMin alarm vali

d
Test case Boundary

[minint,0[
[0, 23]
[24,maxint]

[minint,0[
[0, 59]
[60,maxint]

[minint,0[
[0, 23]
[24,maxint]

[minint,0[
[0, 59]
[60,maxint]

Y, N V, I

[minint,0[- - - - I T(-5,1,1,1,),
err

T(minint,1,1,1)
T(0,1,1,1)

[0, 23] [minint,0[- - - I T(10,-5,1,1)
err

 [0, 59] [minint,0[- - I
 [0, 23] [minint,0[- I
 [0, 59] Y V T(1,1,1,1),

1

 N V T(1,1,2,1),
0

 [60,maxint] - I
 [24,maxint] - - I
 [60,maxint] - - - I
[24,maxint] - - - - I
Parameter not an int - I
Wrong number of parameters - I

Five conditions are defined (range of hours and minutes, alarm should ring or not)
Number of classes: 3x3x3x3x2 = 162 - It is important to prune some combinations
Only test cases for some classes are reported
It is important to distinguish error conditions (invalid classes) from the others (in other words a test
case with output zero is different from a test case with output error)
More classes could be defined for the ‘normal’ case, using other than the Boolean condition ‘alarm
should ring or not’. For instance, alarmMinute <, = ,> minute, and the same for alarmHour

3 (6 points) – For the following function define the control flow graph, and define test cases to
obtain the highest possible node coverage, edge coverage, multiple condition coverage, loop
coverage.
For the test cases, write only the input value.

1 int function (int x, int control, int result){
2 int count;
3 for (count = 0; count < x; count++){
4 if (control >= 1 && count < 20) {
5 result++;
6 }
7 else if (control <= -1 && count < 20){
8 result--;
9 } else { result= result +20;}
10 }
11 return result;
12 }

Coverage type Feasibility (Y/N) Coverage obtained

(%)
Test cases

Node Y, 2 or 3 test cases 100% T1(1,1,10)
T2(1, -1, 10)
T3(1, 0, 10)

Edge Y, 2 or 3 test cases 100% Same as node
coverage

Multiple condition Y, 4 test cases 100% T1, T2

(line 7) T3(21,1,10)
T4(21, -1, 10)

Loop Y, 3 test cases 100% T1, T3
T5(0, ..)

Path It depends on variable
x, so in general is
Npaths <= 3x

In fact not all paths are
feasible because of the
control variable
Npaths = 3x
So the growth is not
exponential but 100%
coverage is not
feasible anyway

4 (1 points) – Give a definition of configuration management

5 (1 points) – Why configuration management is needed?

To keep a software system (made of many different parts, or CI) consistent over time and changes

6 (1 points) – Give an example of non functional requirement

7 (1 points) – What is the difference between fault and failure?

