System documentation of a heating control system

This document has been produced, within the context of software engineering courses at the University of Kaiserlslautern by Marco Heide, Wolfgang Wagenbichler, Andreas Schank, Angela Schmidt and Axel Seck, then reworked by Christiane Differding and Matthias Gutheil. It has been translated in english and adapted by Mario Negro Ponzi of Politecnico di Torino. It has subsequently undergone extensive rework by Vincenzo D'Elia, Alfredo Pironti and Massimiliano Schillaci of Politecnico di Torino.

V 4.0 October 2012

Abstract

A heating control system monitors and controls temperature in a building composed of several rooms. It is a good example of a system with software and non-software parts. This document contains the system requirements, the system design, the software requirements and the software design

Table of contents

Part 1	Problem description	. 4
	Problem	
	Expected functionalities	
1.3	Environment characteristics	. 4
1.3.1	House and rooms	. 4
1.3.2	Boiler and water pump	. 5
Part 2	System requirements	. 6
2.1	Context diagram and interfaces	
	Glossary	
	Functional Requirements	
	Non-functional requirements	
	Inverse user requirements	
	Design decisions	. 8
2.7	Use case diagram	
2.7.1		
Part 3	System design	
Part 4	Software requirements	
	Software design	
	Temperature control	
	Hardware_wrapper	
	Event model	
5.4	User interface	
	Initialization	
	Class detailed design	
	Package structure	
5.8	Sequence Diagrams	
5.8.1		
5.8.2		
5.8.3	1 0	
5.8.4		
5.8.5	1 0	
5.8.6	1 0	
5.8.7	1 0	
5.8.8	1 0	
5.8.9	1 0	
5.8.1	1 0	
5.8.1		
5.9	State diagrams	
5.9.1		
5.9.2		
5.9.3		
5.9.4	Window operation (class Room)	44

5.10	Traceability matrix:	user requirements <-?	> classes	45
------	----------------------	-----------------------	-----------	----

Part 1 Problem description

The heating control system should be developed, to control heating in a house, optimizing energy efficiency and comfort. Below the idea of this system is described.

1.1 Problem

Up until today the temperature of every room is regulated by a thermostat in the heater in the room. A target temperature for each room can be set. An automatic management of the temperature is based only on heaters. A window also is useful to control temperature in a single room. But it should be opened or closed by someone. Water in heaters has a fixed temperature set by a boiler.

Problems in temperature management are:

- 1. Heater's temperature cannot be differently set basing on heating demand or time. There is no regulation linked with people presence
- 2. Thermal regulation is limited to heating. The use of windows to cool down is based on user intervention
- 3. There is no optimization of boiler temperature. The boiler's temperature is set to the maximum value regardless whether the temperature is too low or too high. That produces an energy loss.

The above control system is not satisfying both because of energy loss and because it is not comfortable.

1.2 Expected functionalities

The user wants to be able to individually set temperature for each room using a terminal. So he should be able to provide described parameters.

First it should be possible to set a temperature that could be maintained when there is someone in the room. In doing so the system should not react immediately when someone comes in. It should be provided a time span that indicates how long a person should stay in the room before the system takes control. The user should also be able to set the time span in which the desired temperature should be reached. The provided time span can be maintained heating up heaters for a small period of time over the desired temperature.

Also the user should be able to set a minimum temperature that is acceptable when there is no one in the room. In this case, too, a time span should be provided, after everyone has left the room, before the system takes control.

There should also be default values available for every parameter.

Windows, too, should be controlled by the system. If a window has been completely opened by a user, the system should maintain only the minimal temperature. If the window is open and it starts raining the system should put it in tilt position. More, the windows should be usable by the system to cool down when the outside temperature is cooler, by tilting them.

1.3 Environment characteristics

Below are described the characteristics of the environment inside which the system will operate.

1.3.1 House and rooms

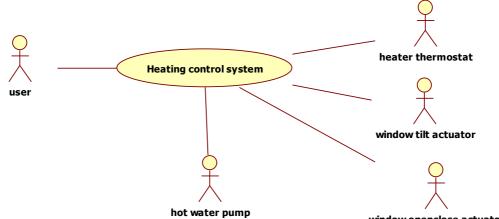
The house is composed of a number of rooms. The house also has:

- an outside temperature sensor
- a rain switch (closed if it rains)

Each room is so configured (as a result of the whole system concept):

- 1 window with two switches and two actuators. A switch gets opened when the window is completely open (open when the window is open / NC = normally closed). The other when is tilted (open when the window is tilted / NC = normally closed). When the window is completely open the tilt switch is closed. An actuator swings the window while the other tilts it.
- 1 heater (hot water) with a thermostat

- 1 presence switch (closed when someone is in the room)
- 1 room temperature sensor

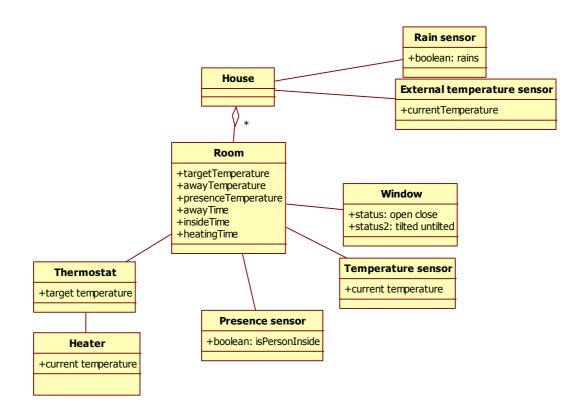

1.3.2 Boiler and water pump

Heat is produced by a centralized boiler, its control is an already deployed autonomous subsystem. The maximum temperature is fixed at 70 degrees. The house receives heat through a single pipe that brings hot water to the heaters. It can be assumed that there are no dispersions, so water is at 70 degrees. The heating control system controls the intake flow of hot water through a pump.

Part 2 System requirements

Context diagram and interfaces 2.1

The context diagram specifies what is meant by 'System' and what are its interfaces with the external world. See System design to know what is inside the system.


window openclose actuator

Interfaces			
With object	Physical	Logical	
User	Touch screen	Screens and buttons	
Window tilt	RS232	command protocol, see vendor tech spec	
actuator		main commands are read position, set position	
Window open	RS232	command protocol, see vendor tech	
close actuator		spec, main commands are read position, set position	
Hot water pump	Bipolar wire, 12 V DC	close = pump ON, open = pump OFF	
Heater	RS232	command protocol, see vendor tech	
thermostat		spec, main commands are read	
		temperature, set temperature	

Remark that there is only one hot water pump, but one heater thermostat and window actuator per room.

2.2 Glossary

Here we describe the key parts and concepts in the case considered. The class diagram below does NOT describe what is inside or outside the system.

A house has several rooms, a rain sensor (tells if it rains or not) and an external temperature sensor (reads temperature outside). A room has a heater (radiates heat from water to air) controlled through a thermostat (open closes a valve that controls water intake in the radiator, trying to keep a set target temperature), a window (can be open closed, or tilted), a presence sensor (tells if a person is inside or not), a temperature sensor (reads the current temperature in the room).

To control temperature in the room, a room defines

- Target temperature: desired temperature in the room
- Away temperature: what should be target temperature when no person is inside
- Presence temperature: what should be target temperature when a person is inside
- Away time: time to wait, after a person exits the room, before reducing target temperature to away temperature
- Inside time: time to wait, after a person enters the room, before rising target temperature to presence temperature
- Heating time: maximum time before which the room should get to target temperature after a person enters

UR-F	Requirement's description	
Temp-UR-F 1	The user shall be able to set <i>PresenceTemp</i> in °C	
Temp-UR-F 2	The user shall be able to set AwayTemp in °C	
Temp-UR-F 3	The user shall be able to set a time span <i>HeatingTime</i> in minutes	
Temp-UR-F 4	The user shall be able to set a time span AwayTime in minutes	
Temp-UR-F 5	The user shall be able to set a time span <i>InsideTime</i> in minutes	
Temp-UR-F 6	The temperature of Temp-UR-F 1 shall be maintained when there is someone in the	
	room and the InsideTime from Temp-UR-F 5 has elapsed	
Temp-UR-F 7	The temperature of Temp-UR-F 2 should be maintained in the room when the room is	

2.3 Functional Requirements

	empty and AwayTime from Temp-UR-F 4 has elapsed			
Tomp LID E 9	The time span from Temp-UR-F 3 indicates after how many minutes the			
Temp-UR-F 8	1 1			
	PresenceTemp from Temp-UR-F 1 after the entrance of a person in the room shall be			
	reached.			
Temp-UR-F 9	The time span from Temp-UR-F 4 indicates for how many minutes the			
	PresenceTemp from Temp-UR-F 1 shall be maintained after the last person has left			
	the room			
Temp-UR-F 10	The time span from Temp-UR-F 5 indicates for how long shall someone stay in the			
1	room for the system to get in control			
Temp-UR-F 11	The HeatingTime from Temp-UR-F 3 must be at least 5 minutes longer than the			
*	InsideTime from Temp-UR-F 5			
Temp-UR-F 12	For each quantity from Temp-UR-F 1, Temp-UR-F 2, Temp-UR-F 3, Temp-UR-F			
	Temp-UR-F 5 default values shall exist.			
Temp-UR-F 13	If a window gets opened the system maintains the room temperature at AwayTemp,			
	whether or not there is someone in the room.			
Temp-UR-F 14	If it starts raining with the window open, the system will set the window in a rain			
_	secure position.			
Temp-UR-F 15	When the temperature of a room with someone inside exceeds that from Temp-UR-F			
_	1 and the outer temperature is lower than the room temperature, the window in this			
room gets tilted				
Temp-UR-F 16	The control of the temperature is admitted with an error of +/-1 °C			
Temp-UR-F 17	The temperature of the boiler shall be set to the maximum required by any heater, not			
	to waste energy.			

Table 1

2.4 Non-functional requirements

The system should complain also with the following requirements.

UR-NF	Requirement's description
UR-NF 1	The system should be easily changeable.

Table 2

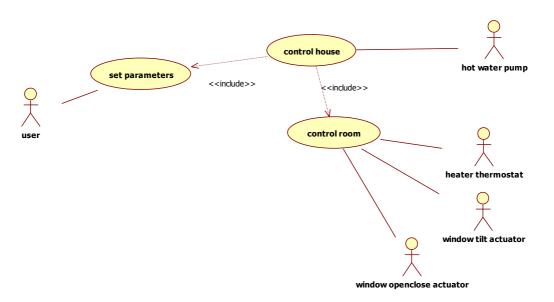
2.5 Inverse user requirements

Following situations should be avoided.

UR-Inv	Requirement's description	
UR-Inv 1	When there is nobody in the room and the room is hotter than target temperature, the	
	window does not get tilted to cool.	
UR-Inv 2	If the user manually opens the window, the system shall not tilt it to the rain secure	
	position.	

Table 3

2.6 Design decisions


Following decisions have been taken.

DD	Requirement's description
DD 1	The system should be object oriented.

Table 4

2.7 Use case diagram

The main use cases are summarized in the following use case diagram.

Use Case: set parameters

The activating actor of this Use Case is the user, it deals with setting and verifying all user settable parameters. It is composed of:

- Scenario 1
- Scenario 8

Use Case: control room

It deals with controlling heater and windows in function of the target temperature set and the presence (or not) of a person in the room. It is composed of:

- Scenario 2
- Scenario 3
- Scenario 4
- Scenario 5
- Scenario 6
- Scenario 7
- Scenario 9
- Scenario 10
- Scenario 11

Use Case: control house

It deals with overviewing all rooms and interacting with the water pump. It is composed of

- Scenario 12
- Scenario 13

2.7.1 Scenarios for Use Cases

The following scenarios detail the use cases.

Other notes (to the following table):

(-) after a User Requirement indicates that a specific precondition (e.g. a time span elapsing) has not been met

(+) after a User Requirement indicates that a specific precondition has been met

Without any other specific note, in the following scenarios those following default values should be considered:

PresenceTemp: 20 °C

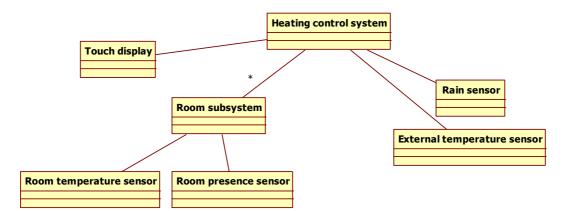
AwayTemp: 15 °C

InsideTime: 5 minutes

AwayTime: 15 minutes HeatingTime: 10 minutes

#	Step	Scenario's description	User requirement	
	User changed HeatingTime, InsideTime and PresenceTemp.			
	1.	Presence switch: closed		
		Outside Temperature: 21 °C		
		Window: closed		
		Rain switch: open		
		Target temperature: 19 °C (PresenceTemp)		
		Room temperature: 18 °C		
	2.	The user sets InsideTime to 5 minutes	Temp-UR-F5	
Scenario 1	3.	The user sets HeatingTime to 9 minutes	Temp-UR-F3	
	4.	The system ignores new time set, because it is just 4	Temp-UR-F11	
		minutes over InsideTime and throws an error message	тешр-ок-гтт	
	5.	The user sets HeatingTime to 10 minutes	Temp-UR-F3	
	6.	The user sets AwayTemp to 16 °C	Temp-UR-F2	
	7.	The user sets AwayTime to 10 minutes	Temp-UR-F4	
	8.	The user sets PresenceTemp to 21 °C	Temp-UR-F1	
	9.	The target temperature is set at 21 °C		
	The use	er leaves the room before the system activates		
	1.	Presence switch: open		
		Outside temperature: 21 °C		
		Window: closed		
		Rain sensor: open		
Scenario 2		Target temperature: 15 °C (AwayTemp)		
		Room temperature: 18 °C		
	2.	A user enters in the room		
	3.	The user leaves the room before the InsideTime has	Temp-UR-F10 (-)	
		elapsed	1	
	4.	The target temperature does not change	Temp-UR-F7	
	The use	er leaves the room for a long time, affecting system behavio)r	
	1.	Presence switch: closed		
		Outside temperature: 16 °C		
		Window: closed		
		Rain sensor: open		
Scenario 3		Target temperature: 20 °C (PresenceTemp)		
		Room temperature: 19 °C		
	2.	The user leaves the room, which becomes empty		
	3.	After AwayTime the target temperature is set to	Temp-UR-F7	
		AwayTemp.	remp-OK-17	

	4.	The window does not get opened because there is no	UR-Inv 1	
	Thomas	one inside the room.	time the near so that it	
		s only one user in the room. This user leaves for a short ot have any effect on the system behavior	time the room so that it	
	1.	Presence switch: closed		
	1.	Outside temperature : 19 °C		
		Window: closed		
		Rain sensor: open		
Scenario 4		Target temperature : 20 °C (PresenceTemp)		
		Room temperature : 19 °C		
	2.	The use leaves the room, which becomes empty		
	3.	The user comes back in the room before AwayTime	Temp-UR-F7 (-)	
	5.	has elapsed.		
	4.	The temperature does not change	Temp-UR-F6	
		ndow is open and a user is present. Target temperature is s	<u>.</u>	
	1.	Presence switch: closed		
	1.	Outside temperature: 19 °C		
		Window: closed		
		Rain sensor: open		
Scenario 5		Target temperature : 20 °C (PresenceTemp)		
		Room temperature: 20 °C		
	2.	The user opens the window		
	3.	Target temperature is set to AwayTemp	Temp-UR-F13	
			F	
	It rains with the window open			
	1.	Presence switch: closed		
		Outside temperature: 17 °C		
		Window: completely open		
		Rain sensor: open		
		Target temperature: 15 °C (AwayTemp)		
		Room temperature: 18 °C		
G	2.	It starts raining		
Scenario 6	3.	The system closes the window	Temp-UR-F14	
	4.	Target temperature is set to PresenceTemp	Temp-UR-F6	
	5.	The user opens again the window		
	6.	Since the window has been opened manually, it doesn't	Temp-UR-F14	
		get closed by the system	UR-Inv2	
	7.	Target temperature is set to AwayTemp	Temp-UR-F13	
		ndow gets controlled by the system to cool	1	
	1.	Presence switch: closed		
		Outside temperature: 17 °C		
		Window: closed		
		Rain sensor: open		
Scenario 7		Target temperature : 20 °C (PresenceTemp)		
		Room temperature: 21 °C	m t == = (
	2.	The room temperature raise to 22 °C and so is more	Temp-UR-F16	
		that 1 °C over target temperature.		
	3.	The system controls the window to cool down	Temp-UR-F15	
		•	тешр-ок-гтэ	
Scenario 8	cenario 8 Scenario for Use Case setValues The user sets all values to default			
	The use			


	1.	The user sets PresenceTemp to default	Temp-UR-F12
	2.	The user sets AwayTemp to default	Temp-OK-F12
	3.	The user sets InsideTime to default	
	4.	The user sets AwayTime to default	
		Temperature of a room is reached	
	1.	Presence switch: closed	
		Outside temperature: 14 °C	
		Window: closed	
a		Rain sensor: open	
Scenario 9		Target temperature : 20 °C (PresenceTemp)	
	2	Room temperature: 18 °C	
	2.	Room temperature reach 19 °C	
	3.	Stop temperature has been reached, since room	Temp-UR-F6
		temperature is just 1 °C below target temperature.	Temp-UR-F16
	4.	Required new boiler temperature is computed	Temp-UR-F18
	The roo	om must be heated up	
	1.	Presence switch: closed	
		Outside temperature: 23 °C	
		Window: closed	
		Rain sensor: open	
		Target temperature: 20 °C (PresenceTemp)	
Scenario 10		Room temperature: 19 °C	
	2.	Room temperature drops to 18 °C	
	3.	Heating temperature gets calculated because room	Temp-UR-F6
		temperature has dropped below 1 °C under target	Temp-UR-F8
		temperature.	Temp-UR-F16
	4.	Heater temperature is set to the necessary value	
	5.	Required new boiler temperature is computed	Temp-UR-F18
	Room t	emperature is above target temperature	
	1.	Presence switch: closed	
		Outside temperature: 23 °C	
		Window: closed	
		Rain sensor: open	
		Target temperature : 20 °C (PresenceTemp)	
Scenario 11		Room temperature: 21 °C	
	2.	Room temperature raises to 22 °C	
	5.	As the temperature of the room is more than 1 °C over	
		target temperature, heater temperature is set to 0 °C	
	4.	Required new boiler temperature is computed	Temp-UR-F18
	5.	The window is not opened to cool down room	Temp-UR-F15(-)
		temperature.	
	At least	t one room requires heat	
Scenario 12	1.	All rooms have thermostat closed	
Scenario 12	2.	Room 2 opens the thermostat	
	3.	Water pump is set to ON	
	One mo	ore room requires heat	
a · 10	1.	Room 1 and 3 have thermostat open	
Scenario 13	2.	Room 2 opens the thermostat	
	3.	No changes to water pump	
		Bes to mater pump	

Part 3 System design

This UML class diagrams shows the main components of the system, as defined by the system designers. Remark that the class 'Heating control system' corresponds to the bubble 'Heating control system' in the context diagram. See the context diagram for interfaces of the system with the external world.

A key choice is on having one interaction point between the user and the system. (Another, more expensive, option is to have an interaction point in each room).

Another choice is to have only one computer (as above, another option is to have a computer in each room). Another choice is wired connections (instead of wireless).

Components

Heating control system	Dedicated computer with touch screen, Cpu, rom,	
	ram, AD converters, DA converters; type of cpu	
	and size of memory to be defined, as compromise	
	between performance and cost	
	At least 12 AD converters	
	Runs Android OS.	
Room presence sensor	Infrared sensor, battery powered, analog output	
	(3V)	
Rain sensor	Self powered (rechargeable battery and solar cell),	
	analog output (0V dry, 10V rain)	
External temperature sensor, room temperature	Self powered (rechargeable battery and solar cell),	
sensor	analog output (0V, 3.5V inverse prop to	
	temperature)	

Internal Connections

From	to	type
Temperature sensor (external,	Computer (AD converter)	Bipolar electrical wire
room)	_	_
Rain sensor	Computer	Bipolar electrical wire
Room presence sensor	Computer	Bipolar electrical wire

External connections

See section 2.1 for connection to be managed with external devices.