Object oriented
approach and UML

Goals

The goals of this chapter are to
» introduce the object oriented approach to
software systems development

* introduce UML notation
* use cases
* sequence diagrams
* class diagrams
+ statecharts diagrams

SOftEng

Summary

» The object oriented approach has been the
more influential, both in research and
practice, in software system development in
the past 10 years.

= UML is the dominant notation based on the
object oriented approach.

» This chapter presents the OO approach and
part of the UML notation.

SOftEng

Outline

Object Oriented Approach and UML
Approaches to modularity
Procedural approach
00 approach
UML

Object and Class diagram
Use cases

Dynamic models

Physical models

SOftEng

Approaches to modularity

SOftEng

Product Principles

= P2, Divide and conquer

+ modularity
¢+ (high) cohesion and (low) coupling
+ information hiding

SOftEng

Approaches

= Given the P2 principle, how to
implement it?

» Procedural approach
= Object oriented approach

SOftEng

Procedural

» Procedural approach

+* module = procedure/function

+ support for analysis, design: Structured
Analysis, Structured Design

+ support for coding: C, Pascal, Fortran, ..

SOftEng

Object oriented

= Object oriented approach
+ module = class

+ support for analysis, design: UML

+ support for coding: C++, Java, Smalltalk,
C#

SOftEng

Procedural approach

+ modulel = procedure
+ module2 = data

¢ relation1 = call procedure

- w/without parameter passing, forth and back
¢ relation2 = rd/wr data

+ coupling
- call relation: low
- rd relation: higher

- wr relation: highest
SOftEng

Vector - less disciplined

int vector[20];
void sort(int [] v, int size) { // sort };
void foo(){ vector[5] = 44;}
int main(){
for (i=0; i<20; i++) { vector[i]=0; };
sort(vector, 20);
vector[4] = 33;

}

SOftEng

Modules and relationships

vectc‘)ﬁ 20 Cectol, 20 - int vector[20]
Linitg | | soitol I | []
|
1 = function [= data
= read/write - =call
— = parameter passing = declare

SOftEng

Modules and relationships

|g|oba| scope i int vector[20]
main
%cto ,120
[fooQ | [sort0| | | |:|
L]
:| = function |:| = data
= read/write = call
— = parameter passing = declare
SOftEng P passing

Vector - more disciplined

void init (int [] v, int size) {
for (i=0; i<size; i++) { v[i]=0; }};
void sort(int [] v, int size) { // sort };
int main(){
int vector[20];
init(vector, 20);
sort(vector, 20);

}

SOftEng

Problems

= With global declaration, rd/wr relation
can happen between data and any
other function, without explicit
declaration (parameter passing)

= if it can happen, it will happen
+ especially during maintenance/evolution

= coupling increases

SOftEng

= root problem is no explicit link
between (structured) data and
procedures working on it

+ init(), sort() and vector[20] are not linked
+ they should, as they work in symbiosis

- parameter passing should be avoided

- while rd/wr relationship should be confined
within sort() init()

- concept of object

SOftEng

OO approach - Class

class vector{
private:
int v[20];
public:
vector(){ // same as init}
sort(){ // same as sort }

SOftEng

OO approach - object

int main() {
vector vl, v2: //
vl.sort();

SOftEng

OO approach

* modulel = procedure

+ module2 = data

* module3/4 = object / class
* relation1 = message passing

- similar to procedure call with parameter

passing

+ relation2 = rd/wr data

* coupling
- call relation: low

- rd relation: higher
- wr relation: highest

SOftEng
class vector
init
object vl

sort

I

int v[20]

L1 O

- class describes structured data and
procedures that can rd/wr them

- object v1 is instance of (is described by) class
- no rd/wr outside class

SOftEng

10

Modules and relationships

vL v| L
Linit) | Lsort)| | | NO |:|
[1 = function [] = data
= read/write - =call
—+ = parameter passing = declare
SOftEng
More OO
.................. |n|t(),SOft() vl

carl

= message pass

rrrrrrrrrrrrrrrr = declare
SOftEng

11

Results

—

| 00
e S s Y e S —
\ARS_—on
[o e e l\\r\
—

—1In oo world objects exchange messages
—coupling between objects is lower
—message passing vs. procedure call
— objects hide r/w relationship
—less relationships among objects
SOFftERN Q(Bjects are higher level of abstraction

——=more complexsystems camn be buitt

Message passing vs. procedure call

= Data exchange
+ reference to object
is passed
+ receiver can send
messages, cannot
rd/wr object

SOftEng

= Message passing » Procedure call
» Control mechanism = Control mechanism
¢ same ¢ Same

» Data exchange
+ object is passed

+ receiver can rd/wr
object

12

Message passing vs. procedure call

= Message passing * Procedure call
void foo(vector v){ void foo(int vector[]){
v.sort(); //
v.[14] = 7; // NO vector[14] =7; //
} PRESES }
int main(){ int main(){
vector v1; int v1[20];
vector v2; foo(v1);
foo(v1); foo(v2); }
S(%ﬂEng
Interface
= set of messages an object can answer
to
v1 instance of Vector
inity) | e
sort() 1] O [
print()*D
SOftEng

13

P2 revised

= objects / classes are better

modularization elements

* by construction message passing has

(much) lower coupling than procedure

call and rd/wr

= designer has to decide ‘right’ classes

to implement information hiding

SOftEng

OO and process

Description

User-
Requirements

Developer-
Requirements ' --------

-

UML

/ N\

System

System Requirements Description

g design
5 R\
|-
5; Reg ulreen s nits
5 N4
3

Java, ——_|° design

C++, ..]

sofl |°

Software Unit Products

System
stem

Software System Products

Software Application Products

14

UML

SOftEng

UML

= Unified Modeling Language

» standardized by OMG, Object
Management Group

= Resources

+ www.cetus-links.org

+ Fowler, UML Distilled, 3rd edition, Addison
Wesley

SOftEng

15

Modeling dimensions vs. UML diagrams

= Structure, entities, concepts
+ Class diagram
+ Package diagram, component diagram
* Functions (What the system can do)
+ Use case diagram
= Time, dynamics, temporal constraints
+ Sequence (collaboration) diagram
+ Statechart diagram
+ Activity diagram

SOftEng

Class / object models

SOftEng

16

Object

= Model of entity (physical or inside
software system)

+ ex.: student, exam, stack, window
» characterized by
+ identity
¢ attributes (or data or properties)
+ operations it can perform (behaviour)
¢+ messages it can receive

= graphic representation: rectangle
SOftEng

student 1

student 2

name = Mario
surname = Rossi
id=1234

name = Giovanni
surname = Verdi
id = 1237

doExam()
followCourse()

doExam()
followCourse()

SOftEng

17

Class

= Descriptor of objects with similar
properties

Student

name
surname
id

doExam()
followCourse()

SOftEng

Class - cont.

= attribute
- the name of an attribute is the same for all
objects and can be described in the class
- the value of an attribute may be different on
each object and cannot described in the class
= operation
- is the same for all objects and can be
described in the class

- will be applied to different object (possibly
with different results)

SOftEng

18

Class and object

» object is instance of a class

Student: student 1

Student name = Mario
name surname = Rossi
surname id=1234
d print()

print()

Student: student 2

name = Giovanni
surname = Verdi

Class Student id = 1237

print()

SOftEng objetcs (instances) of class Student

Class and object: Java

class Student{
String name,
String surname;
long int id;

void print(){ System.out.println(“Info of
student:” + “” + name + surname + id);

}

SOftEng

19

class Exam {
int grade;
Student s;
void print(){
System.out.printin(“Grade: ” + grade);
}
}

SOftEng

main(){
Student student1;
Student student?2;

studentl = new Student(“Mario”,
1234);

student2 = new Student(“Giuseppe”, “Verdi”,
1237);

studentl1.print();

student2.print();

Rossi”,

Object diagram

= Models objects of interest in a specific

case
| Student: student 3 |
| Student: student 1 |

| Student: student 2 |

- Remark: above is a reduced notation for
object/class
- Remark: links are key part of diagram, see
So ey slides

Class diagram

= Models classes of interest in a specific
case

- Remark: relationships are key part of this

diagram, see next slides
SOftEng

21

Link

= Model of association between objects

passes-1

Exam: examl

| Student: student 3 |

| Student: student 1 | \w

| Student: student 2 |

SOftEng

Relationship

= Descriptor of links with similar
properties

Course

1,1

0,*

1,1 passes 0,*
Student Exam

SOftEng

22

Relationships

Class Student Class Exam

Link
between objects

Multiplicity

= Constraint on max / min number of
links that can exit from an object

SOftEng

23

Multiplicity

—]
SOftEng

Exactly n
Zero or more

between m and n (m,n included)

from m up

Zero or one (optional)

Relationships

ExamSession Date
* s planned onthe 1 |day
—~ | month
"x e e year
Prl nt() e prlnt
addStudent() Mult|p||<:|ty -
subscribes to |
Student Course
name v " subjectname
surname
id 3..10 attends * * | lecturer
attender attendee
print " ’ print
Roles

SOftEng

24

Order multiplicity
dateReceived: Date(0..1) 3 " Customer
isPrepaid: Boolean(1) * 1
e name (1)
s wm A address [0..1]
dispatch R 1 getCreditRating(): String
»”
v E
1 - constraint o~
“, generalization class
¥
{if Order.customer.getCreditRating is
“poor” then Order.isPrepaid must be
true)}
role name
% C C C
) -llrhyl.. =
..., | contactName crediCardNumber
% o creditRating
* creditLimit
Order Line “*-a| billForMonth(integer)
remind()
ntity: Integer
?u.pri;e: Money * {getCreditRating() == "poor”)
* salesRep ||, 0..1
navigable
1 ‘,- Employee
Product

Properties

Showing properties of an order as attributes

Order

+ dateReceived: Date [0..1]
+ isPrepaid: Boolean [1]
+ lineltems: OrderLine [*] {ordered}

Showing properties of an order as associations

+ isPrepaid

.1
Date L x Order
+ dateReceived
R4 3
source

target
* |, {ordered}
OrderLine |

tEng

Boolean

25

A bidirectional association

owner
Person Car

0.1 *

. Using a verb phrase to name an association

Owns P

Person Car

SOftEng

Notes and Comments

. A note is used as a comment on one or more diagram elements

- Car
Includes pick-ups -
and SUVs but not -~
motorbikes

SOftEng

Dependency

Example dependencies

E =
b Data Gateway
B 'y :
?velw\: = _.‘_-4 _____ > Employee . §
- Data Gateway
SOftEng
Aggregation

= B /s-part-of A means that objects
described by class B can be attributes
of objects described by A

| A P | & |

SOftEng

27

Example

Car Engine
> . power
1 4 Tyre
CD player
SOftEng
Class Car {
Tyre t[4];
Engine e;
CDPlayer cd;

}
class Tyre {}

Class Engine {}

SOftEng

Specialization

= or Generalization, or is-a

= A specializes B means that objects
described by A have the same
properties (attributes, operations) of
objects described by B

= Objects described by A can have
additional properties

SOftEng

Subclass superclass

= Subclass = specialized class
» Superclass = generalization class

SOftEng

29

Inheritance

= mechanism associated to
specialization/generalization
relationship

= properties defined by B are inherited
by A
+ A does not need to repeat these
properties
+ Human
- canThink (own property)

- canMove (inherited from Animal)
SO feHsAdve (inherited from LivingBeing)

LivingBeing
isAlive
Animal Vegetal
canMove CO2to 02
Human
canThink Flower
Shopkeeper Customer
Florist
-9

30

In short

»= Object diagram * Class diagram
(models) (descriptors)
+ object + class
¢ link + relationship

- aggregation
- specialization
+ multiplicity

» to model structural information
* structural viewpoint

SOftEng

DO NOT in class diagrams

= Use plurals for
classes

+ Classroom yes, no
classroomS
= Use transient
relationships
* (they will be

modeled in
scenarios)

» Checkout loops

* multiplicities
SOftEng

31

DO NOT in class diagrams

= Repeat as an
attribute of a class
a relationship
starting from the
class

= Confound system
design and glossary

SOftEng

Support from OO prog. languages

= object, class
¢ supported
= relationships
¢ aggregation
- supported partially
+ specialization
- supported

SOftEng

32

Use of class diagrams

» Class diagrams are just a notation
= can be used in different documents
with different goals
¢ user requirements
+ developer requirements
+ system design
* (unit design)

SOftEng

Use of class diagrams

—

Problem description

class diagram with

few domain level classes
Level of detai

Source code:
class diagram reverse engineered
from code

SOftEng

33

Use cases

SOftEng

Use Cases

Semi-formal notation
Study of the application domain

Identification of boundaries and interactions
among the system and the external world

Useful to

+ Oblige the analyst to state well-defined
boundaries between system and external world

+ Organize system functions into elements (use
cases) on which attention is focused

+ Supply a first basis for the specification of
system structure from the user perspective

SOftEng

68

34

Use Case Diagram

» Provide a more functional view of a
software system

+ functions, actors
+ boundary

Readable by customer/user
Usually defined before class diagrams

Diagram composed of actors, use
cases, relationships

SOftEng

Elements of a Use Case

% = Someone (user) or something
(external system, hardware) that
+ Exchanges information with the
system

+ Supplies input to the system, or
receives output from the system

Actor

> = A functional unit (functionality)
Use Case part of the system

SOftEng

70

35

Relationships

—O
Use Case A
Actor

7 : Use Case A

Actor

7N Use Case B
Actor

Use Case A Use Case B

SOftEng

= Association models:

+ Which actors participate in a use
case

+ Where execution starts

+ Adornments (e.g. multiplicity,
direction) allowed

+ Actorl participates in Use CaseA and
is the trigger of the use case

+ Actor2 participates in UseCaseB and
UseCaseB is the trigger

» |nclude

+ Models that functionality A is used
in the context of functionality B
(one is a phase of the other)

71

Relationships: generalization

O+—O

Use Case A Use Case B

% ? 1 *
Place Order
SalesPerson

I

g ? 1 * :
) Establish Credit
Supervisor

SOftEng

* Generalization
+ Defines functionality B
as a specialization of
functionality A (e.g. a
special case)

» Generalization

+ A generalization from an
actor B to an actor A
indicates that an
instance of B can
communicate with the
same kinds of use-case
instances as an instance
of A

72

36

Relationships:

extension

O

Use Case C

I <<include>>
|
|

Use Case A

SOftEng

f— - <<extend>>
xtension points),
bigError : before C O

Use Case B

= Extension

+ An extend relationship
from use case A to use
case B indicates that an
instance of use case B
may be augmented by
the behavior specified by
A

¢ The behavior is inserted
at the location defined
by the extension point
(name : where) in B,
which is referenced by
the extend relationship

73

Use case - Example

Customer’

P
N

Toy order system

Includes:
- SO S Carch by
preference

Staff

tension Foints
" y
: <<Extend>>
! Calculate total

SOftEng

74

37

Use case

= A scenario is a sequence of steps
describing an interaction between a

user and a system

= A use case is a set of scenarios tied
together by a common user goal.

SOftEng

Use cases vs.requirements

» Requirement » Use case
(functional) or
scenario in use case
or

step in scenario

= Mapping is not 1:1

= Requirement purpose is to support
traceability and tends to be finer grained
than use case

» Use case purpose is to understand how

S OSYEerg works

38

Example: student management

» students select courses

» professors update the list of available
courses

» professors plan exams for each course

» professors can access the list of students
enrolled in a course

» professors perform exams then record
issue of exam for student (pass/no pass,
grade)

= all users should be authenticated
SOftEng

Example

O

Administrative Office Select Course Request List of Students

<<InC|u\dex\ /<<Inc|ude>> \
Authenncate User
<<|nc|ude>> wlnCIude%
Professor
Student

Request List of Courses Insert Course

SOftEng

Example

<<include>> O

Book Hotel

A

<<include>> %
Q Customer

Acquire Customer data

Check availability

<<include>>

-, -,

S Oﬁfﬁﬁ(ﬁd't Card data Book Hotel with Credit Card

Use case diag and class diagram

= They must be consistent

» Use case diagram » Class diagram
+ actor + may become a class
¢ use case ¢+ must become one

operation on a class
- may originate
several operations
on several classes
(see sequence diag)

+ interaction ¢ not rep_resgnted (see
dynamic diagrams)

SOftEng

40

Dynamic models

= Sequence diagrams

= Collaboration diagrams
= State charts

= Activity Diagrams

SOftEng

Sequence diagrams

SOftEng

41

Sequence Diagrams

= One vertical line per object or actor
= Time passes top down

= Arrows represent message passing
among objects

SOftEng

Ex. Starting from

» Use case “request list of Students”

-

Request List of Students

N

X

Professor

SOftEng

42

Object

)\
RN
. Professor :System :course :Student
selectCourse (subjectName)
—
print()
/ o
lifeline
rint
{ for all students printg
subscribed
to course}
System
requestListOfStudents
selectCourse(subjectNgme)
*
Student Course
name subjectname
surname
o 3..10 attends * * | lecturer
print print
SOftEng

43

Sequence diag and Use case

= sequence diag corresponds to a Use
case

+ provides detail on how Use case is
executed

= Use case can be described by several
sequence diagrams

SOftEng

Sequence diag and class diag

= all objects/classes appearing in
sequence diagram must be defined in
object/class diagram

= all messages sent to object/class must
be defined as operation in receiving
object/class

SOftEng

44

Use of sequence diagrams

= One software system <--> several
(infinite) sequence diagrams
= only the key ones can be described

* starting from use cases

+ key functions, difficult functions, nominal
cases, key exceptions

SOftEng

Collaboration diagrams

= Same (actually less in some cases)
information and constraints as
sequence diagrams

SOftEng

45

= 1: selectCourse()
N —>
7 — :System
: Professor
/ 2: print()
%
S 3oprint()

_ Student

SOftEng

Statechart diagram

SOftEng

46

UML Statechart Diagram

= Shows the sequences of states that objects
of a class go through during their life cycle
in response to external events and also the
responses and actions in reaction to an
event.

= Model elements

+ States

+ Transitions

+ Events

+ Actions and activities

SOftEng

Example: STD for a Phone

|

__Initial state
e transition
event ,
, . state
» ’

off h*OOk >/ -

on hook

SOftEng

47

State Diagram

» Graph made of nodes and arcs

+ Nodes represent states;
¢ arcs represent transitions between states

+ Arcs are associated to events, that trigger the
transition

» Describes the behaviour of a single class
of objects

= Can represent

+ one-shot life cycles (initial and final state)
+ continuous loops (no final state)

SOftEng

Classes that Need State Diagrams

= Not all classes need a state diagram

» State-dependent classes

+ objects described by the class react differently to
events depending on their state

» State-independent classes do not need State
Diagrams

+ an object always responds the same way to an
event

SOftEng

48

Statecharts: glossary

State Machine

final state —e

2

initial state

state -
transition nested state

onHook guard
B

Working

keepAlive / check() ready(3) [signalOK]

Connecting

internal transition
offHook / reclaimConnection()

event
action

SOftEng

97

Elements

Actions - no time passes

+ Sending a message, change an attribute value,
generate an output

Activities — time passes

+ Doing a calculation, executing an algorithm,
counting a time interval

Events

+ Receiving a message, terminating a time interval
States

+ |dle, busy, ..
Transitions

+ Moving from a state to another state

SOftEng

49

State

= Abstraction of attribute values and links

of an object

= Sets of values are grouped together into

a state

» Corresponds to the interval between two

events received by the object

¢ events represent points in time

+ states represent intervals of time
» Has duration

SOftEng

State

¢ Characterized by

- Name

- Activities (executed inside the state)
- Do/ activity

- Actions (executed at state entry or exit)
- Entry/ action
- Exit/ action

- Actions executed due to an event
- Event [Condition] / Action ASend Event

SOftEng

50

Notation for States

=)

name - tﬂo/ build piece J
' '
On event/ ' |
(Typing Password \ fmthltles
entry/ set echo off .
exit/ set echo on o

'get(char)/ store char

Notation for States (cont.)

= Termination states have special
symbols

+ The initial state is unique, and models the
state in which the object is initially

+ The final state(s) is a state in which the
object terminates to execute

? Initial state
/

" Intermediate .
state 4\/. Final state

SOftEng

51

Example

|

Event Transition digit (n)

State

digit (n)

dial tone

on-hook| |off-hook

SOftEng

Example

Black wins

.—{ White’s move
start

black white

stalemate

moves moves @ Draw
alemate
[Black’s move
White wins

SOftEng

52

Transition

+ Models a state modification

- Occurs at the verification of an event, if a
condition is valid

- Can be associated with an action and/or a
method of an object

+ |s described according to the following
syntax
- Event [Condition] / Action ASend Event

SOftEng

Transition

event
(Typing Password N

entry/ set echo off ¥ ! Idle I
exit/ set echo on Request/

get(char)/ store char display “enter password”

J "
y
.

action

SOftEng

53

StateChart Example

Ta :
VIUCU RCbUI UCTT

TogglePower
off | 1 On
TogglePower

Remote Control

“VCR”
TV Control | VR Control

“OnOff"/"TV.TogglePower “OnOff"/"Video Recorder.TogglePower

TV

TogglePower

TogglePower

Event Types

» External Event (also known as system event)

+ is caused by something outside the system boundary

+ e.g. when a cashier presses the “enter item” button on a
POS, an external event has occurred.

» |nternal Event

+ is caused by something inside our system boundary.

+ In terms of SW, an internal event arises when an operation
is invoked via a message sent from another internal
object. (The messages in collaboration diagrams suggest
internal events)

= Temporal Event

+ is caused by the occurrence of a specific date and time or
passage of time.

SOftEng

54

Guard Condition

= Boolean function of object values
= Valid over an interval of time

= Can be used as guards on
transitions

= Guard condition shown in brackets,
following event name

SOftEng

Transition Action and Guards

event action

off hook / pliy dial tone

| valid subscriber | F
®

on hook

guara condition

SOftEng

55

Operations

= Attached to states or transitions

= Performed in response to
corresponding states or events

= Types
* Activity
¢ Action

SOftEng

Operations: Activity

= Activity
+ operation that takes time to complete
+ associated with a state

+ include continuous or sequential
operations
+ notation “do: A” within a state box
- indicates activity A
- starts on entry
- ends on exit
SOftEng

56

Example - State Activities

login
do : display login prompt

password
do: get password

|

SOftEng

Operations: Action

= Action
¢ instantaneous operation
+ associated with an event

¢ notation

-slash (“/”) and name of the action,
following the event

SOftEng

57

Example - Transition Actions

ight button down / display popup men
Menu
Idle .
visible

right button up / erase popup menu

cursor moved / highlight menu item

SOftEng

Statechart Example

Start
art

get first item

Get next item [All items valid &&
[not all items validated(] validating)2/l items available]

; do /check

item

Dispatchin

Activity

do /initiat
delivery

[All items valid &&

. ! Delivered
some items not in stock]

) Transition
Item Received ansitio

[some items not in stock

Pending Completed
! “~

State

|

Self-transition

SOftEng

58

Example

start button pressed /

complete button| pressed / i '
print receipt header

print receipt/footer

.
Reading productyiogudt code input (product code) /
codes print product price

total button
pressed

4[Closing transaction]

SOftEng

Nested State Diagrams

State diagrams can get complex

For better understanding and
management

A State in a state diagram can be
expanded into a state diagram at
another level

Inheritance of transitions

SOftEng

59

Example: Nested States

off hook / play dial tone
[valid subscri

connecte

omplet

SOftEng

Activity diagram

SOftEng

60

Activity Diagram

» Extension of Statechart Diagram used to
represent temporal sequence of activities
and data flow

» Used to represent workflow process, or the
inner service logic of an algorithm or
function, process

» Parallel process representation and
synchronization (fork - join)

= Partial Fork and Join are not definable

SOftEng

Activity Diagram @ @ \éalie
4
Somebody 0

knows it ?

v
Is it your (O]
mistake ?

v

61

Action state e Transition

Decisione: Sincronizzazione tra flussi
Alternativa in base a condizione dj controllo paralleli

Measure the | Action state

Cool down
temperature
[too cold] [too hot] l
Heat up Cool down SW'tCh off .Open
heating windows
SOftEng
123
Activity state
A
Alle!native threads
Guard condition
threads
Synchronization Vb_‘ar _(fork)
Decision (branch) Transition
(baggage) ra
Receive baggage E d
:
Build Product —
ecision gmerge)
Synchronization bar (jgir! -
Subactivity state
Give travel documentation
SOftEng ©
124

62

Object Flow

take order

order

[entered]

order

ffilled]

deliver order

125
initial state
action state Commission architect)
Develop plan
sequisrtidl branch : [not accepted]
[else] concurrent fork
activity state
with submachine
Do site work) CDO trade work()%u"em join
\I/ \J/ / object flow
_ . : CertificateOfOccupancy
T [completed]
S¢ s
126

63

Swim-lanes

Linee verticali opzionali in un activity diagram che
mostrano I'allocazione di un gruppo di attivita™ a u n
ruolo o persona dell’organizzazione

Board

Supervise
exams

|

|

127

Example Il

Sales Mat Product Mgt
Start Sale
. €I
Jfor each
Accounting Dept -
{__Check Product 3
Authorize Payment) ={ Cancel Sale)
[credit BAD]
[qredit OK]

Give Change |
(PrintReceipt)

Update Irnv.

[goh = threphold)

[aah == threshold]

Rearder ltem

b
C CumEieleSale p

128

64

Example Il

Customer Sales Warehouse

SOftEng
129
Signals
» Signal sending take order
between transition
¢ Optionally to an Eem@er _____________________________
object
= Signal receiving —
+ Transition governed il order |
by signal
orderFilled %
deliver order
SOftEng
130

65

More on sync

Order
[filled]

Deliver

SOftEng

Physical Diagrams

SOftEng

66

UML Physical Diagrams

+ Component diagram

- Various components in a system, and their
dependencies

- Explains the structure of a system
+ Deployment diagram

- Physical relationships among software and
hardware in a delivered systems

- Explains how a system interacts with the
external environment

+ Package Diagram
- High Level System Architecture

SOftEng

Components

» They are used to model different
kind of components in a system:
+ packages
+ Executable files
+ System or Application Libraries
+ Files
+Tables in a DB

’ LR]

SOftEng

67

Example

<<file>> <<exeoutabler>
Mew Controller
Userlnterface Files : CMS Controller :
T
1
1
v

i Model

- - <<library >>
| Course : Course. | | Topic : Topic. | Database fccess

| CourseCalendar : CourseCalendar |

Student : Student

SOftEng

Component Diagram

+ Physical module of
code
- A package
- A collection of
classes

Component

+ Dependency among
> components
- Change impact
- Communication
dependency
- Compilation
dependency
SOftEng

68

Elements of component diagram

= A Component Interface can be
represented in two ways

MNomeComponente
Nomelrterfaccia
NomeComponente
<<Interface>>
T T T Nomelterfaceia
SOftEng

Component Diagram

» Other elements
+ Processes
Body - Contained into
components
- Thread, process,...
Specification ¢ PrOgramS
- Language-dependent

Dependenc |
P y —/— - Applet, Application,...

Component B ¢ Subsystems
- Organising

components into
(nested) packages

SOftEng

69

Dependency: run-time Relationship

typically a ‘calls'
relationship 7
1 (I
supplier K-----emooeeo- client
[LT 1
sur_)plier <.-----.-.---.|;: client
object T

SOftEng

Example

groups.xml [T types.xml ﬁ

DB access / DB access

User
) Profile —(
) Manager
ii_group iuP X
Profile

Group '
Management

Management
R Administrator
W, Application
i

Communication

C -
ommunication
L] Handling

SOftEng

70

Confiqurazione : File Cenificali Destinatari . Repostono

| |
I I
% Server di Gestione |
1
MAC
[s e Securizzazione —— _>| AQOQ : Chiave Privala
|

[] GensmzioneMessaged | . | ey
|

lettura dali archivistici | | __messaggi di confenma o ripudio
protocellazione in uscita

| protocollazione in INresso] Analisi Messaggi L
| | {con autorizzazione) [—] |

|
|
|
I Server di Protocolio
|
|
|

POP3 SMTP

I
I
I Server di Posta Elettronica
I
|

dali
Gestione Dati Archivisticl | — — — — — 1
==
1

& W | decitrazione

Dati DB Registro di Protocollo : DB
= e AQOQ : Chiave Privata

Deployment diagram

+ Physical layout of the various hardware
components (nodes)
- Processor: capable of executing programs
- Device: component with no computing power

¢ Distribution of

- Executable T
Modem N)
- Programs on nodes . Gonnection
+ Node classes and instances PC '

access

SOftEng Disk

Deployment diagram

+ Nodes
- Some kind of computational
unit
- Programmable resource

- Where components can be
executing

- Hardware resource
- Usable by components
+ Connections

- Communication paths over
which the system will interact

Processor

connection

Device

SOftEng

Example

Application
Server

Provider servers

PC2 Access
Server

Client Client

LAN connection

Vocal

Device —_, gateway
Cisco 3640
SOftEng

Combining the two Diagrams

» Place the Component Diagram on top
of the Deployment Diagram
+ Which components run on which nodes?

- System awareness of components
- Component - Interface communication details

SOftEng

Example

Application Server

groups.xml ﬁ types.xml ﬁ

DB\apcess DB atﬁ;ess
ii_group \ '
Profile GURU
A i
ii_guru
= ii_guru . Management
PC1 Communication ‘\5 PC3
Group Administrator
Management Application
i PC2AS
[1CH
I Proxy
Serve

LAN connection

SOftEng

VG Cisco 3640 ‘

73

<=Devices>

; Wonitor
Z
<<Processor== A ;
cPU
I Front a :
ows98 ¢ o Page <=Devices>>
. 1) L Stampante
) Tee
- P
Imernet
ficezood Explarer —_—
<<Devices=
| Mouse
Doz i
5 4 \ /*—.’.
Visual ~ " <LOeviness
C++ Tastiera
|~
SOftEng
Uno del Maller & configurato per la
_____ gestione dei messaggi di ingresso
If ricevuti dalia casefla istituzionale di A00
[
I
————— PC]
1

- Sorver di Posta Eletironica

i
|
b - ﬁ% - Servor di Protocollo ;
|
I
|
|
|
|
|
1

Listradamento del messaggi
n ingress viene effetiuato
manuaiments,

p. 6s. redirigendo | messaggi
presso indinzzi intemi

¥
Registio di Protocolio . DB

Casolia Istituzionale - Ropositorio

PG
— ~baler
%—————) [
: Funzionario

odulo al

"
=
i
&

SOf

|
I

TCPAP

SQftEn

UML Package

» Package are containers of
other UML elements

» Package defines a scope for its
elements

= Package can be nested
stree-structure, like a file-system

SOftEng

75

UML Package Diagrams

1

u N Otat i O n : Package Name

+ A Package box with a name

+ Dependency (it groups «——--
relationships among classes
in different packages)

SOftEng

Package Diagram

+ It is any diagram showing packages of
classes and the dependencies among
them

¢ Itis just a Class Diagram showing only
packages and inter-dependencies
+ Dependency

- Changes to the definition of one element may
cause changes to the other

- Message sending, structural composition,
usage,...

SOftEng

76

Examples of Package Diagram

]

Students

\

]

Academic
Employees

/

Mailing List

Example #2 ———

SOftEng

+~—— Example #1

Orders Customers

1

Mailing List Ul Mailing List

How to use packages

UML packages can be used in 2 ways:

1. During analysis to draw a high
level architecture

Grouping classes in subsystems

Underline subsystems dependencies
2. During design in package diagram
to organize a complex class
diagram

SOftEng

77

Package Diagram as Software Architecture

Database External
subsystem

v

Application User Interface
Server

SOftEng

Package Diagram

= |t is a class diagram where
packages are used to group sets
of classes

» Use it when there are lots of
classes

= The package interface is the set
of all interfaces of contained
classes

SOftEng

78

ldentify a Package

= Given a big class diagram it is often
needed to introduce packages to clarify
the diagram

= Group together classes offering similar
functionalities, with a high coupling among
classes within the same package.

= A good package organization may lead to
a low coupling between packages

SOftEng

Package vs classes

= Only these relationships are allowed:

+ Dependency
+ Realization

= Read as: client depends on supplier

Client Supplier

SOftEng

79

Package dependencies

= Dependency between packages
means inner classes in “client”
package can :
¢ |nherit from
¢ |nstantiate
+ Use (invoke methods of)

...classes in “supplier’ package

» Goal: Minimize the number of

dependencies among packages
SOftEng

Realization relationship

* |t is a relationship in which client realizes
(implements) operations defined by supplier

= These are valid notations:

From: To:
- Package Interface | cecunei | -
- Package Class ——
o]
- Class Interface
SOftEng

80

From Class to Package diagram

1. Aggregate classes related to same
functionalities in the same package.

2. Classes in the same inheritance hierarchy
typically go in the same package.

3. Classes related by aggregation or
composition relationships typically go in
the same package

4. Classes collaborating may go in the same
package

- Have a look to Sequence diagrams

SOftEng

Example: Class = package

Image

+height: int ‘_

+width: int 1.r

placed_from

+reposition(): void
= 2ol B

81

Example: Package Diagram

Image
7 A *
// ! S
’ I \\
Vs
’ I ! \\
d Reference N
—I/ /'7| Picture [*~ < ¥|

e s h ~ ~
Mosaic P Mosaic
Image p=—=—=—=— == === === > Generator

SOftEng

Package Global

= The label “global” means that a
package can be used by all other
packages in the system.

= E.g. the package contains many utility
classes used by all other packages.

= Dependencies with global package are
no more depicted

* The package diagram is more readable
—

Nome package

SOtEng gl obal

82

UML Profile

= UML defines how to extend the standard adding a
new semantics to model elements

= UML Profiles are used to meet specific modeling
requirements for

+ A specific domain (ex: business modeling, telecom,
security,...)

+ A specific technology (ex: UML-EJB, Web)
= A UML Profile uses 3 UML extension mechanisms:
+ Stereotypes
+ Properties (Tagged Values)
+ Constraints (with Object Constraint Language)

SOftEng

Stereotype

= Give a different semantics to a model
element (typically a class element)
+ Standard Stereotypes:
- Interface, Abstract, Subsystem

+ Stereotype in UML Profiles
- EJB in UML-EJB profile

- Busineetc...
<<abstract>> <<external>>
“ehicle LoghManager
Ldrive() Srite)
®getSpeed() Sread()
®<<final=> getWersion()
SOftEng

83

Stereotype Package: Subsystem

* A subsystem should be used when a set of
classes and/or other packages need to be
encapsulated within a container and hidden
behind a set of well-defined interfaces.

* None of the contents of subsystem are visible
except the interfaces of the subsystem.

» This allows subsystems to be easily replaced,
and the implementations changed, provided
the interfaces remain unchanged.

» |t offers a degree of encapsulation greater than
that of the package.

SOftEng

Example

Bookstore system is composed by 4 subsystems with
different functionalities.

Noted throughout the <<include>> relationshipsheac
subsystem provides a certain piece of the Bookstore
system functionality,

<<System>>
Bookstore
Enterprise System
7 A IO
o7 scinclide»>
<<include>?"/ 5 «incli:g:‘le» u\fqnclude»
«<subsystem=> <<subsystem>> <<gubsystem=> <<gubsystem>>
Ecommerce Telephone Sales Warehouse Mailing
Subsystem Subsystem Subsystem Subsystem

PN L

84

Architecture Design

= System design often follows top-down
approach: the abstract view is further
refined in subsystems

= A software architecture can be divided in:

+ Layers
+Subsystems
* Packages (or Software Modules)

» Packages (or the subsytem stereotype)
can be used to draw the system
architecture
SOftEng

Example or architectural layers

Ul Layer

“Application Logic” Layer

Services Layer

85

UML Package Diagram

Presentation |
] —]
Swing Text
Application
——— 1
Sales Payment Products
Technical Services |
] ———
Persistence Log4J
SOHENS J

UML Package Diagram

Presentation |

l ——

Swing Text

A,ppﬁééiion e
™ Sales [T » Pricing Inventory
Technical Services |

l ————+¢ I ¥
s Persistence Log4J

SPOItEng

86

How to implement
associations

UML low-level design

System
-sc:Vector
- ss:Vector
- se:Vector
1] 4 2
* * .
Course Student ——
- name:String * * |- first:String 1 0.* -
- period:int - last:String - datz.[?_atte
-instructor:String - id:String - gtrad e.ltnSt dont
- students:Vector| - exams:Vector - student Studen
+ print ()
SOftEng

87

Association :1

» From Exam towards Course

Exam Course

Class Exam {
Course c;
setCourse(Course c)f
this.c=c;} }
}

SOftEng

Class Course {

Association :n

» From Course towards Exams

Exam Course

Class Course {
ArrayList exams;

Course(){ exams = new ArrayList (); }
addExam(Exam e){ exams.add(e);}

SOftEng }

Association 1:n

= Both directions

Exam Course
* 1
Class Exam {
Course c; Class Course {
setCourse(Course c){ ArrayList exams;
this.c=c; Course(){ exams = new ArrayList ();
}
} addExam(Exam e){ exams.add(e);}
}
SOftEng

Association 1:1

= Both directions

Course Instructor
1 1
Class Course { Class Instructor {
Instructor i; Course c;
} }
SOftEng

89

Association n:m

= Both directions

Course N * Student

Class Course { Class Student {

ArrayList students; ArrayList courses;

Course(){ Students(){

students = new Vector(); courses = new Vector();
}
addStudent(Student s){ addCourse(Course c){
students.add(s); courses.add(c);

} }

} SOftEng }

Summary - diagrams

= Static/structural view
+ Class diagram
= Functional view
+ Use Case diagram
= Dynamic view
+ Sequence diagram
+ Statechart & Activity Diagrams
» Physical view

+ Component & Deployment diagrams
SOftEng

Uses of UML [Fowler]

= Sketch
+ Used informally to share/discuss ideas
+ On whiteboard/paper
+ Meant to change
= Blueprint
+ Used in normative way to describe system to be built
+ On documents
+ Meant not to change
= Programming language
+ Model driven architecture
+ Forward and backward automatic transformations

SOftEng

Uses of UML in process [Fowler]

= Requirements

+ Use case diagrams, Class diagrams,
activity diagrams, state diagrams

= Design

+ Class, sequence, package, state,
deployment

SOftEng

91

Uses of UML in process

In this course

User requirements

+ Use cases, (activity diagrams)
Developer requirements

+ Class diagrams, sequence diagrams
Design

+ Class, deployment, package, statecharts.

SOftEng

92

