
1

Object oriented Object oriented Object oriented Object oriented 
approach and UMLapproach and UMLapproach and UMLapproach and UML

Goals

The goals of this chapter are to

� introduce the object oriented approach to 
software systems development

� introduce UML notation

� use cases

� sequence diagrams

� class diagrams

� statecharts diagrams



2

Summary

� The object oriented approach has been the 
more influential, both in research and 
practice, in software system development in 
the past 10 years. 

� UML is the dominant notation based on the 
object oriented approach.

� This chapter presents the OO approach and 
part of the UML notation. 

OutlineOutlineOutlineOutline

Object Oriented Approach and UMLObject Oriented Approach and UMLObject Oriented Approach and UMLObject Oriented Approach and UML

Approaches to modularityApproaches to modularityApproaches to modularityApproaches to modularity

Procedural approachProcedural approachProcedural approachProcedural approach

OO approachOO approachOO approachOO approach

UMLUMLUMLUML

Object and Class diagramObject and Class diagramObject and Class diagramObject and Class diagram

Use casesUse casesUse casesUse cases

Dynamic modelsDynamic modelsDynamic modelsDynamic models

Physical modelsPhysical modelsPhysical modelsPhysical models



3

Approaches to modularity

Product Principles

� P2, Divide and conquer 

� modularity

� (high) cohesion and (low) coupling 

� information hiding



4

Approaches

� Given the P2 principle, how to 
implement it?

� Procedural approach

� Object oriented approach

Procedural

� Procedural approach

� module = procedure/function

� support for analysis, design: Structured 
Analysis, Structured Design

� support for coding: C, Pascal, Fortran, ..



5

Object oriented

� Object oriented approach

� module = class

� support for analysis, design: UML 

� support for coding: C++, Java, Smalltalk, 
C#

Procedural approach 

� module1 = procedure

� module2 = data 

� relation1 = call procedure

– w/without parameter passing, forth and back

� relation2 = rd/wr data

� coupling

– call relation: low

– rd relation: higher

– wr relation: highest



6

Vector - less disciplined

int vector[20];

void sort(int [] v, int size) { // sort };

void foo(){   vector[5] = 44;}

int main(){

for (i=0; i<20; i++) {  vector[i ]=0; };

sort(vector, 20);

vector[4] = 33; 

}

Rd wr can happen anywhere

Modules and relationships 

= function = data

= read/write = call

main

sort()init()

int vector[20]vector, 20
vector, 20

= parameter passing = declare



7

Modules and relationships 

= function = data

= read/write = call

main

sort()foo()

int vector[20]

vector, 20

= parameter passing = declare

global scope

Vector - more disciplined

void init (int [] v, int size) {

for (i=0; i<size; i++) {  v[i ]=0; }};

void sort(int [] v, int size) { // sort };

int main(){

int vector[20];

init(vector, 20);

sort(vector, 20);

}

Rd/wr only in functions 
that receive vector



8

Problems

� With global declaration, rd/wr relation 
can happen between data and any 
other function, without explicit 
declaration (parameter passing)

� if it can happen, it will happen

� especially during maintenance/evolution

� coupling increases

� root problem is no explicit link 
between (structured) data and 
procedures working on it

� init(), sort() and vector[20] are not linked

� they should, as they work in symbiosis

– parameter passing should be avoided

– while rd/wr relationship should be confined 
within sort() init()

– concept of object



9

OO approach - Class 

class vector{

private:        

int v[20];

public:

vector(){  // same as init }

sort(){  // same as sort }

}

OO approach - object

int main() {

vector v1, v2;  // 

v1.sort();   

}



10

OO approach 
� module1 = procedure

� module2 = data 

� module3/4 = object / class

� relation1 = message passing 

– similar to procedure call with parameter 
passing

� relation2 = rd/wr data

� coupling

– call relation: low

– rd relation: higher

– wr relation: highest

– class describes structured data and 
procedures that can rd/wr them

– object v1 is instance of (is described by) class

– no rd/wr outside class

class vector

init

sort
int v[20]

object v1

Is instance of



11

Modules and relationships 

= function = data

= read/write = call

main

sort()init()

v1v1 v1

= parameter passing = declare

NO

More OO

main

v1

= message pass

= declare

init(), sort()

car1



12

Results

– In oo world objects exchange messages
– coupling between objects is lower

– message passing vs. procedure call 
– objects hide r/w relationship

– less relationships among objects
– objects are higher level of abstraction

– more complex systems can be built

Message passing vs. procedure call

� Message passing

� Control mechanism

� same

� Data exchange

� reference to object 
is passed

� receiver can send 
messages, cannot 
rd/wr object 

� Procedure call

� Control mechanism

� same

� Data exchange

� object is passed

� receiver can rd/wr 
object



13

Message passing vs. procedure call

� Message passing

void foo(vector v){

v.sort(); // 

v.[14] = 7; // NO

}

int main(){

vector v1;

vector v2;

foo(v1);   foo(v2);

}

� Procedure call

void foo(int vector[]){

vector[14] = 7; // 

}

int main(){

int v1[20];

foo(v1);

}

Interface

� set of messages an object can answer 
to

init()

sort()

print()

v1 instance of Vector



14

P2 revised

� objects / classes are better 
modularization elements

� by construction message passing has 
(much) lower coupling than procedure 
call and rd/wr

� designer has to decide ‘right’ classes 
to implement information hiding

OO and process

UML

Java, 
C++, ..



15

UML

UML

� Unified Modeling Language

� standardized by OMG, Object 
Management Group

� Resources

� www.cetus-links.org

� Fowler, UML Distilled, 3rd edition, Addison 
Wesley



16

Modeling dimensions vs. UML diagrams

� Structure, entities, concepts

� Class diagram

� Package diagram, component diagram

� Functions (What the system can do)

� Use case diagram

� Time, dynamics, temporal constraints

� Sequence (collaboration) diagram

� Statechart diagram

� Activity diagram

Class / object models



17

Object

� Model of entity (physical or inside 
software system)

� ex.: student, exam, stack, window

� characterized by

� identity

� attributes (or data or properties)

� operations it can perform (behaviour)

� messages it can receive

� graphic representation: rectangle

doExam()
followCourse()

name = Mario
surname = Rossi
id = 1234

student 1

name = Giovanni
surname = Verdi
id = 1237

student 2

doExam()
followCourse()



18

Class

� Descriptor of objects with similar 
properties

name
surname
id

Student

doExam()
followCourse()

Class - cont.

� attribute
– the name of an attribute is the same for all 

objects and can be described in the class

– the value of an attribute may be different on 
each object and cannot described in the class

� operation
– is the same for all objects and can be 

described in the class 

– will be applied to different object (possibly 
with different results) 



19

Class and object

� object is instance of a class

print()

name = Mario
surname = Rossi
id = 1234

Student: student 1

print()

name
surname
id

Student

Class Student

print()

name = Giovanni
surname = Verdi
id = 1237

Student: student 2

objetcs (instances) of class Student

Class and object: Java

class Student{

String name; 

String surname;

long int id;

void print(){  System.out.println(“Info of 
student:” + “ ” + name + surname + id);

}

}



20

class Exam {

int grade; 

Student s; 

void print(){

System.out.println(“Grade: ” + grade);

}

}

main(){ 

Student student1;

Student student2;

student1 = new Student(“Mario”, “Rossi”, 
1234);

student2 = new Student(“Giuseppe”, “Verdi”, 
1237);

student1.print();

student2.print();

}



21

Object diagram 

� Models objects of interest in a specific 
case

– Remark: above is a reduced notation for 
object/class 

– Remark: links are key part of diagram, see 
next slides

Student: student 3

Exam: exam2

Student: student 1

Student: student 2

Exam: exam1

Class diagram

� Models classes of interest in a specific 
case

– Remark: relationships are key part of this 
diagram, see next slides 

Student Exam



22

Link

� Model of association between objects

Student: student 3

Exam: exam2

Student: student 1

Student: student 2

Exam: exam1
passes-1

passes-2

Relationship

� Descriptor of  links with similar 
properties

Student Exam
passes 0,* 1, 1 

Course

0,* 

1, 1 



23

Relationships

Class Student Class Exam

Relationship between classes

Link
between objects

NO
NO

Multiplicity

� Constraint on max / min number of 
links that can exit from an object



24

Multiplicity

n
Exactly n

*
Zero or more

0..1
Zero or one (optional)

m..n
between m and n (m,n included)

m..*
from m up 

Relationships

ExamSession

Print()
addStudent()

print

name
surname
id

Date

print

day
month
year

Student Course

print

subjectname
lecturerattends 44443..10 *

Name
of relationship

Is planned on the 4444* 1

Multiplicity

attender attendee

Roles

subscribes to 



25

Properties



26

Bidirectional Associations

Notes and Comments



27

Dependency

Aggregation

� B is-part-of A means that objects 
described by class B can be attributes 
of objects described by A 

A B



28

Example

Car Engine

power

CD player

Tyre1
4

1

Class Car {

Tyre t[4];

Engine e;

CDPlayer cd;

}

class Tyre {}

Class Engine {}



29

Specialization

� or Generalization, or is-a

� A specializes B means that objects 
described by A have the same 
properties (attributes, operations) of 
objects described by B 

� Objects described by A can have 
additional properties

Subclass superclass

� Subclass = specialized class

� Superclass = generalization class



30

Inheritance

� mechanism associated to 
specialization/generalization 
relationship

� properties defined by B are inherited 
by A

� A does not need to repeat these 
properties

� Human

– canThink (own property)

– canMove (inherited from Animal)

– isAlive (inherited from LivingBeing)

Example

Animal

canMove

Shopkeeper

LivingBeing 

isAlive

Vegetal

CO2 to O2

Flower

Human

canThink

Florist

Customer



31

In short

� Object diagram

(models)

� object

� link

� Class diagram 

(descriptors)

� class

� relationship

– aggregation

– specialization

� multiplicity

� to model structural information

� structural viewpoint

DO NOT in class diagrams

� Use plurals for 
classes

� Classroom yes, no 
classroomS

� Use transient 
relationships

� (they will be 
modeled in 
scenarios)

� Checkout loops

� multiplicities



32

DO NOT in class diagrams

� Repeat as an 
attribute of a class 
a relationship 
starting from the 
class

� Confound system 
design and glossary

Support from OO prog. languages

� object, class

� supported

� relationships

� aggregation

– supported partially

� specialization

– supported



33

Use of class diagrams

� Class diagrams are just a notation

� can be used in different documents 
with different goals

� user requirements

� developer requirements

� system design

� (unit design)

Use of class diagrams

Level of detail

Problem description
class diagram with 
few domain level classes

Source code: 
class diagram reverse engineered 
from code



34

Use cases

68

Use Cases

� Semi-formal notation

� Study of the application domain

� Identification of boundaries and interactions 
among the system and the external world

� Useful to

� Oblige the analyst to state well-defined 
boundaries between system and external world

� Organize system functions into elements (use 
cases) on which attention is focused

� Supply a first basis for the specification of 
system structure from the user perspective



35

Use Case Diagram

� Provide a more functional view of a 
software system

� functions, actors

� boundary

� Readable by customer/user

� Usually defined before class diagrams

� Diagram composed of actors, use 
cases, relationships

70

Elements of a Use Case

� Someone (user) or something 
(external system, hardware) that

� Exchanges information with the 
system

� Supplies input to the system, or 
receives output from the system

� A functional unit (functionality) 
part of the system

Actor

Use Case



36

71

Relationships

� Association models:

� Which actors participate in a use 
case

� Where execution starts

� Adornments (e.g. multiplicity, 
direction) allowed

� Actor1 participates in Use CaseA and 
is the trigger of the use case

� Actor2 participates in UseCaseB and 
UseCaseB is the trigger

<<include>>

Actor
Use Case A

Actor
Use Case B

Use Case BUse Case A

Actor
Use Case A

1 *

� Include

� Models that functionality A is used 
in the context of functionality B 
(one is a phase of the other)

72

Relationships: generalization

� Generalization

� A generalization from an 
actor B to an actor A 
indicates that an 
instance of B can 
communicate with the 
same kinds of use-case 
instances as an instance 
of A

� Generalization
� Defines functionality B 

as a specialization of 
functionality A (e.g. a 
special case)

Use Case BUse Case A

SalesPerson

Supervisor
Establish Credit

1 *

1 *

Place Order



37

73

Relationships: extension

� Extension

� An extend relationship 
from use case A to use 
case B indicates that an 
instance of use case B 
may be augmented by 
the behavior specified by 
A

� The behavior is inserted 
at the location defined 
by the extension point 
(name : where) in B, 
which is referenced by 
the extend relationship

Use Case B

<<extend>>

Use Case A

Extension points
bigError : before C

<<include>>

Use Case C

74

Use case - Example



38

Use case

� A scenario is a sequence of steps 
describing an interaction between a 
user and a system

� A use case is a set of scenarios tied 
together by a common user goal.

Use cases vs.requirements

� Requirement 
(functional)

� Use case
or
scenario in use case 
or
step in scenario

� Mapping is not 1:1

� Requirement purpose is to support 
traceability and tends to be finer grained 
than use case

� Use case purpose is to understand how 
system works



39

Example: student management

� students select courses 

� professors update the list of available 
courses

� professors plan exams for each course

� professors can access the list of students 
enrolled in a course

� professors perform exams then record 
issue of exam for student (pass/no pass, 
grade)

� all users should be authenticated

Example

Administrative Office

Student

Request List of Courses

Select Course Request List of Students

Authenticate User
<<include>>

Professor

Insert Course

<<include>>

<<include>><<include>>



40

Example

Customer

Check availability

Book Hotel

Acquire Customer data

Book Hotel with Credit CardAcquire Credit Card data

<<include>>

<<include>>

<<include>>

Use case diag and class diagram

� Use case diagram

� actor

� use case

� interaction

� Class diagram

� may become a class

� must become one 
operation on a class 
- may originate 
several operations 
on several classes 
(see sequence diag)

� not represented (see 
dynamic diagrams)

� They must be consistent



41

Dynamic models

� Sequence diagrams

� Collaboration diagrams

� State charts

� Activity Diagrams

Sequence diagrams



42

Sequence Diagrams

� One vertical line per object or actor

� Time passes top down

� Arrows represent message passing 
among objects

Ex. Starting from

� Use case “request list of Students”

Request List of Students

Professor



43

: Professor
:System :course :Student

selectCourse (subjectName)

print()

print()

Object
Actor

lifeline

{ for all students
subscribed 
to course}

print

name
surname
id

Student Course

print

subjectname
lecturerattends 44443..10 *

System

requestListOfStudents
selectCourse(subjectName)

*



44

Sequence diag and Use case

� sequence diag corresponds to a Use 
case 

� provides detail on how Use case is 
executed

� Use case can be described by several 
sequence diagrams

Sequence diag and class diag

� all objects/classes appearing in 
sequence diagram must be defined in 
object/class diagram

� all messages sent to object/class must 
be defined as operation in receiving 
object/class



45

Use of sequence diagrams

� One software system <--> several 
(infinite) sequence diagrams

� only the key ones can be described

� starting from use cases

� key functions, difficult functions, nominal 
cases, key exceptions

Collaboration diagrams

� Same (actually less in some cases) 
information and constraints as 
sequence diagrams



46

:System

: Course

: Student

: Professor

2: print()

3: print()

1: selectCourse()

Statechart diagram



47

UML Statechart Diagram

� Shows the sequences of states that objects 
of a class go through during their life cycle 
in response to external events and also the 
responses and actions in reaction to an 
event.

� Model elements

� States

� Transitions

� Events

� Actions and activities

Example: STD for a Phone

Idle

Initial state

Active
off hook

on hook

transition
event

state

Phone



48

State Diagram

� Graph made of nodes and arcs

� Nodes represent states; 

� arcs represent transitions between states

� Arcs are associated to events, that trigger the 
transition

� Describes the behaviour of a single class 
of objects

� Can represent

� one-shot life cycles (initial and final state)

� continuous loops (no final state)

Classes that Need State Diagrams

� Not all classes need a state diagram

� State-dependent classes
� objects described by the class react differently to 

events depending on their state

� StateStateStateState----independent classesindependent classesindependent classesindependent classes do not need State 
Diagrams

� an object always responds the same way to an 
event



49

97

Statecharts: glossary

Elements

� Actions - no time passes
� Sending a message, change an attribute value, 

generate an output

� Activities - time passes
� Doing a calculation, executing an algorithm, 

counting a time interval

� Events 
� Receiving a message, terminating a time interval

� States
� Idle, busy, ..

� Transitions 
� Moving from a state to another state



50

State

� Abstraction of attribute values and links 
of an object 

� Sets of values are grouped together into 
a state

� Corresponds to the interval between two 
events received by the object
� events represent points in time
� states represent intervals of time

� Has duration

State

� Characterized by

– Name

– Activities (executed inside the state)

– Do/Do/Do/Do/ activity

– Actions (executed at state entry or exit)

– Entry/Entry/Entry/Entry/ action

– Exit/Exit/Exit/Exit/ action

– Actions executed due to an event

– Event [Condition] / Action ^Send Event



51

Notation for States

Idle 
Working

do/ build piecename

activitiesTyping Password

entry/ set echo off
exit/ set echo on

get(char)/ store char

On event/

Notation for States (cont.)

� Termination states have special 
symbols

� The initial state is unique, and models the 
state in which the object is initially

� The final state(s) is a state in which the 
object terminates to execute

Initial state

Intermediate 
state Final state



52

Example

dial tone

idle

dialling
digit (n)

on-hook
on-hook

digit (n)

State

TransitionEvent

off-hook

Phone

Example

White’s move

Black’s move

start

white
moves

black
moves

Black wins

Draw

White wins

stalemate

stalemate



53

Transition

� Models a state modification

– Occurs at the verification of an event, if a 
condition is valid

– Can be associated with an action and/or a 
method of an object

� Is described according to the following 
syntax

– Event [Condition] / Action ^Send Event

Transition

Typing Password

entry/ set echo off
exit/ set echo on

get(char)/ store char

Idle
Request/
display “enter password”

action

event



54

StateChart Example

Off On
TogglePower

TogglePower

Video Recorder

TV Control
“TV”

“VCR”

Remote Control

Off On
TogglePower

TogglePower

TV

VR Control

“OnOff”/^Video Recorder.TogglePower“OnOff”/^TV.TogglePower

Event Types

� External Event (also known as system event)
� is caused by something outside the system boundary

� e.g. when a cashier presses the “enter item” button on a 
POS, an external event has occurred.

� Internal Event
� is caused by something inside our system boundary.

� In terms of SW, an internal event arises when an operation 
is invoked via a message sent from another internal 
object. (The messages in collaboration diagrams suggest 
internal events)

� Temporal Event
� is caused by the occurrence of a specific date and time or 

passage of time.



55

Guard Condition

� Boolean function of object values

� Valid over an interval of time

� Can be used as guards on 
transitions

� Guard condition shown in brackets, 
following event name

Transition Action and Guards

Idle Active

off hook / play dial tone

on hook

event

[ valid subscriber ]

action

guard condition



56

Operations

� Attached to states or transitions

� Performed in response to 
corresponding states or events

� Types

� Activity

� Action

Operations: Activity

� Activity

� operation that takes time to complete

� associated with a state

� include continuous or sequential 
operations

� notation “do: A” within a state box

– indicates activity A

– starts on entry

– ends on exit



57

Example - State Activities

login
do : display login promptdo : display login promptdo : display login promptdo : display login prompt

password
do: get passworddo: get passworddo: get passworddo: get password

Operations: Action

� ActionActionActionAction

� instantaneous operation

� associated with an event

� notation

– slash (“////”) and name of the action, 
following the event



58

Example - Transition Actions

Idle
Menu
visible

right button down //// display popup menu

right button up //// erase popup menu

cursor moved //// highlight menu item

Statechart Example

Validating

do /check
item

Dispatching

do /initiate
delivery

CompletedPending

/ get first item

Start

[All items valid &&
all items available ]

Delivered[All items valid &&
some items not in stock ]

Item Received
[some items not in stock ]

Get next item
[not all items validated ]

Self-transition State

Transition

Activity



59

Example

Idle

Reading product
codes

Closing transaction

start button pressed /
print receipt header

total button
pressed

complete button pressed /
print receipt footer

product code input (product code) /
print product price

Nested State Diagrams

� State diagrams can get complex

� For better understanding and 
management

� A State in a state diagram can be 
expanded into a state diagram at 
another level

� Inheritance of transitions 



60

Example: Nested States

Playing 
Dial Tone

complete

Idle Talking

ConnectingDialing

connecteddigit

digit

Activeoff hook / play dial tone

[ valid subscriber ]

on hook

Activity diagram



61

121

Activity Diagram

� Extension of  Statechart Diagram used to 
represent temporal sequence of activities 
and data flow

� Used to represent workflow process, or the 
inner service logic of an algorithm or 
function, process

� Parallel process representation and 
synchronization (fork – join)

� Partial Fork and Join are not definable

Somebody Somebody Somebody Somebody 
knows it ?knows it ?knows it ?knows it ?

Solved ?Solved ?Solved ?Solved ?

Have you Have you Have you Have you 
tried to solve tried to solve tried to solve tried to solve 
the problem?the problem?the problem?the problem?

Your Your Your Your 
SoftwareSoftwareSoftwareSoftware

works fine?works fine?works fine?works fine?

Mistakes of Mistakes of Mistakes of Mistakes of 
others are others are others are others are 
bigger ?bigger ?bigger ?bigger ?

Give shame to Give shame to Give shame to Give shame to 
someone elsesomeone elsesomeone elsesomeone else

Is it your Is it your Is it your Is it your 
mistake ?mistake ?mistake ?mistake ?

You are You are You are You are 
LOSTLOSTLOSTLOST

Don’t trouble Don’t trouble Don’t trouble Don’t trouble 
anymoreanymoreanymoreanymore

Show that Show that Show that Show that 
you don’t you don’t you don’t you don’t 

know  know  know  know  
anythinganythinganythinganything

about thatabout thatabout thatabout thatPROBLEM SOLVEDPROBLEM SOLVEDPROBLEM SOLVEDPROBLEM SOLVED

YYYY NONONONO

YYYY NONONONO

NONONONOYYYY

NONONONO

NONONONO

NONONONO

YYYY

YYYY

YYYY

YYYY

Activity Diagram Activity Diagram Activity Diagram Activity Diagram 



62

123

Action state e Transition

Measure the
temperature

Cool downHeat up

[too cold] [too hot]

Cool down

Open
windows

Switch off
heating

Decisione: 
Alternativa in base a condizione

Sincronizzazione tra flussi
di controllo paralleli

Action stateAction stateAction stateAction state

124

Activity diagrams: glossary

Build Product

Subactivity state



63

125

Object Flow

126

Example I



64

127

Swim-lanes

Linee verticali opzionali in un activity diagram che  
mostrano l’allocazione di un gruppo di attivita` a u n 
ruolo o persona dell’organizzazione

Teach

Supervise
exams

Teacher

Sit
exams

Student Board

Evaluate

Learn

128

Example II



65

129

Example III

130

Signals

� Signal sending 
between transition

� Optionally to an 
object

� Signal receiving

� Transition governed
by signal



66

131

More on sync

Pay

Deliver

Order
[filled]

Physical Diagrams



67

UML Physical Diagrams

� Component diagram
– Various components in a system, and their 

dependencies

– Explains the structure of a system

� Deployment diagram
– Physical relationships among software and 

hardware in a delivered systems

– Explains how a system interacts with the 
external environment

� Package Diagram
– High Level System Architecture

Components

� They are used to model different 
kind of components in a system:

�packages

�Executable files

�System or Application Libraries

�Files

�Tables in a DB

�…



68

Example

Component Diagram

� Physical module of 
code

– A package

– A collection of 
classes

� Dependency among 
components

– Change impact

– Communication 
dependency

– Compilation 
dependency

Component



69

Elements of component diagram

� A Component Interface can be 
represented in two ways

Component Diagram

� Other elements

� Processes

– Contained into 
components

– Thread, process,…

� Programs

– Language-dependent 

– Applet, Application,…

� Subsystems

– Organising 
components into 
(nested) packages

Body

Specification

Component B

Dependency



70

Dependency: run-time Relationship

Example 

ii_group
Profile

ii_UP
Management

ii_
Communication

groups.xml types.xml

DB access DB access

Communication
Handling

Administrator 
Application

Group
Management

User
Profile

Manager



71

Deployment diagram

� Physical layout of the various hardware 
components (nodes)

– Processor: capable of executing programs

– Device: component with no computing power

� Distribution of 

– Executable

– Programs on nodes

� Node classes and instances PC

Modem

Disk

connection

access



72

Deployment diagram

� Nodes

– Some kind of computational 
unit

– Programmable resource

– Where components can be 
executing

– Hardware resource

– Usable by components

� Connections

– Communication paths over 
which the system will interact

Processor

Device

connection

Example

Vocal
gateway 

Cisco 3640

Application
Server

PC3

PC2 Access 
Server

PC1

LAN connection

LAN

Client Client

Device

Provider servers



73

Combining the two Diagrams

� Place the Component Diagram on top 
of the Deployment Diagram

� Which components run on which nodes?

– System awareness of components

– Component↔Interface communication details

Example

VG Cisco 3640 

Application Server

PC3PC1

LAN connection

LAN

GURU
ii_group
Profile

ii_guru
Managementii_guru

Communication

groups.xml types.xml

DB access DB access

Administrator 
Application

Group
Management

PC2 AS

CH

Proxy 
Server



74



75

UML Package

� Package are containers of 
other UML elements

� Package defines a scope for its 
elements

� Package can be nested 

�tree-structure, like a file-system



76

UML Package Diagrams

� Notation:

� A Package box with a name

� Dependency (it groups 
relationships among classes 
in different packages)

Package Name

Package Diagram

� It is any diagram showing packages of 
classes and the dependencies among 
them

� It is just a Class Diagram showing only 
packages and inter-dependencies

� Dependency

– Changes to the definition of one element may 
cause changes to the other

– Message sending, structural composition, 
usage,…



77

Examples of Package Diagram

Students Academic 
Employees

Mailing List 
Manager Orders Customers

Domain

Mailing List 
Manager

Mailing List UIExample #2

Example #1

How to use packages 

UML packages can be used in 2 ways:

1. During analysis to draw a high 
level architecture

• Grouping classes in subsystems

• Underline subsystems dependencies

2. During design in package diagram 
to organize a complex class 
diagram



78

Package Diagram as Software Architecture

Database

Application
Server

User Interface

External 
subsystem

Package Diagram

� It is a class diagram where 
packages are used to group sets 
of classes

� Use it when there are lots of 
classes

� The package interface is the set 
of all interfaces of contained 
classes



79

Identify a Package

� Given a big class diagram it is often 
needed to introduce packages to clarify 
the diagram

� Group together classes offering similar 
functionalities, with a high coupling among 
classes within the same package.

� A good package organization may lead to 
a low coupling between packages

Package vs classes

� Only these relationships are allowed:

� Dependency

� Realization

� Read as: client depends on  supplier

SupplierClient



80

Package dependencies

� Dependency between packages 
means inner classes in “client”
package can :

� Inherit from

� Instantiate

�Use (invoke methods of)

…classes in “supplier” package 

� Goal: Minimize the number of 
dependencies among packages

Realization relationship

� It is a relationship in which client realizes 
(implements) operations defined by supplier

� These are valid notations:

From: To:

- Package Interface 

- Package Class

- Class Interface

P a c k a g e  1

In te r fa c e  1

P a c k a g e  2
C la s s  A

C la s s  B

in t e rfa c e  2



81

From Class to Package diagram

1. Aggregate classes related to same 
functionalities in the same package. 

2. Classes in the same inheritance hierarchy 
typically go in the same package. 

3. Classes related by aggregation or
composition relationships typically go in 
the same package

4. Classes collaborating may go in the same 
package

- Have a look to Sequence diagrams

Example: Class � package



82

Example: Package Diagram

Mosaic 
Image

Image

Reference 
Picture

Mosaic 
Generator

Package Global

� The label “global” means that a 
package can be used by all other 
packages in the system.

� E.g. the package contains many utility 
classes used by all other packages.

� Dependencies with global package are 
no more depicted

� The package diagram is more readable

Nome package

global



83

UML Profile

� UML defines how to extend the standard adding a 
new semantics to model elements

� UML Profiles are used to meet specific modeling 
requirements for 

� A specific domain (ex: business modeling, telecom, 
security,…)

� A specific technology (ex: UML-EJB, Web)

� A UML Profile uses 3 UML extension mechanisms:

� StereotypesStereotypesStereotypesStereotypes

� Properties (Tagged ValuesTagged ValuesTagged ValuesTagged Values)

� ConstraintsConstraintsConstraintsConstraints (with Object Constraint Language)

Stereotype

� Give a different semantics to a model 
element (typically a class element)

� Standard Stereotypes: 
– Interface, Abstract, Subsystem

� Stereotype in UML Profiles
– EJB in UML-EJB profile

– Busineetc…



84

Stereotype Package: Subsystem

� A subsystem should be used when a set of 
classes and/or other packages need to be 
encapsulated within a container and hidden 
behind a set of well-defined interfaces.  

� None of the contents of subsystem are visible 
except the interfaces of the subsystem.  

� This allows subsystems to be easily replaced, 
and the implementations changed, provided 
the interfaces remain unchanged.  

� It offers a degree of encapsulation greater than 
that of the package.

Example

Bookstore system is composed by 4 subsystems with 
different functionalities.

Noted throughout the <<include>> relationships, each 
subsystem provides a certain piece of the Bookstore 
system functionality. 



85

Architecture Design

� System design often follows top-down 
approach: the abstract view is further 
refined in subsystems

� A software architecture can be divided in: 

�Layers

�Subsystems

�Packages (or Software Modules)

� Packages (or the subsytem stereotype) 
can be used to draw the system 
architecture

Example or architectural layers

UI Layer

“Application Logic” Layer

Services Layer

Persistence
Subsystem

Logging
Subsystem

….



86

UML Package Diagram

Application

Payment ProductsSales

Technical Services

Log4J …Persistence

Presentation

TextSwing

UML Package Diagram

Application

Pricing InventorySales

Technical Services

Log4J …Persistence

Presentation

TextSwing



87

How to implement How to implement How to implement How to implement 
associationsassociationsassociationsassociations

UML low-level design

+ print ()

- first:String 
- last:String 
- id:String 
- exams:Vector 

Student

- data : :Date
- grade:int
- student : Student

Exam
1 0..*- name:String 

- period:int
- instructor:String: 
- students:Vector

Course

**

- sc : Vector
- ss : Vector
- se : Vector

System

1

*

1

*

1

*



88

Association :1

� From Exam towards Course

Exam Course

Class Exam {
Course c;
setCourse(Course c){

this.c=c;}
}

* 1

Class Course {

}

Association :n 

� From Course towards Exams

Exam Course

Class Course {

ArrayList exams;

Course(){ exams = new ArrayList (); }
addExam(Exam e){ exams.add(e);}

}

* 1



89

Association 1:n

� Both directions

Exam Course

*

Class Course {
ArrayList exams;

Course(){ exams = new ArrayList ();
}

addExam(Exam e){ exams.add(e);}
}

Class Exam {
Course c; 
setCourse(Course c){

this.c=c;
}

}

1

Association 1:1

� Both directions

Course Instructor

Class Course {
Instructor i;

}

Class Instructor  {
Course c;

}

1 1



90

Association n:m

� Both directions

Class Course {
ArrayList students;
Course(){

students = new Vector();
}
addStudent(Student s){

students.add(s);
}

}

Class Student {
ArrayList courses;
Students(){

courses = new Vector();
}
addCourse(Course c){

courses.add(c);
}

}

Course Student
* *

Summary - diagrams

� Static/structural view

� Class diagram

� Functional view

� Use Case diagram

� Dynamic view

� Sequence diagram

� Statechart & Activity Diagrams

� Physical view

� Component & Deployment diagrams



91

Uses of UML [Fowler]

� Sketch
� Used informally to share/discuss ideas

� On whiteboard/paper

� Meant to change

� Blueprint
� Used in normative way to describe system to be built

� On documents

� Meant not to change

� Programming language
� Model driven architecture

� Forward and backward automatic transformations

Uses of UML in process [Fowler]

� Requirements

� Use case diagrams, Class diagrams, 
activity diagrams, state diagrams

� Design

� Class, sequence, package, state, 
deployment



92

Uses of UML in process 

� In this course

� User requirements

� Use cases, (activity diagrams) 

� Developer requirements

� Class diagrams, sequence diagrams

� Design

� Class, deployment, package, statecharts.


