Data Quality

Data Management and Visualization

Licensing Note

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

To view a copy of this license, visit <u>http://creativecommons.org/licenses/by-nc-nd/4.0/</u>. You are free: to copy, distribute, display, and perform the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or licensor.

Non-commercial. You may not use this work for commercial purposes.

No Derivative Works. You may not alter, transform, or build upon this work.

- For any reuse or distribution, you must make clear to others the license terms of this work.
- Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

Software Qualities

Adapted from ISO/IEC 25020

Target entities

Target entities vs. Q. Models

Software Product Quality

- ISO/IEC 9126: Issued 1991, revised 2001
 Being retired
- ISO/IEC 250xx SQuaRE
 - Software product Quality Requirements and Evaluation
 - Family of standards
 - in development

	2501 <i>x</i> Quality Model		
2503 <i>x</i> Quality Requirements	2500 <i>x</i> Quality Management	2504 <i>x</i> Quality Evaluation	
	2502 <i>x</i> Quality Measurement		

Relationships among standards

7

Quality conceptual model

Model structure

- Characteristic
 - Main aspects, e.g., usability
- Sub-Characteristic
 - Specific aspects, e.g. accessibility
- Measure
 - Measurement function to evaluate a specific (sub)-characteristic
- Measure element
 - Fundamental

DATA QUALITY

Data Quality Model

11

Quality characteristics

- Accuracy
- Completeness
- Consistency
- Accessibility
- Compliance
- Confidentiality
- Efficiency
- Availability
- Portability

- Currency
- Credibility
- Understandability
- Precision
- Traceability
- Recoverability

Accuracy

- Correspondence between data and reality
 - Syntactic
 - It belongs to a set of validated information
 - Semantic
 - The meaning (the content) corresponds to the reality

Open or Closed Wordl?

- Closed World (CWA):
 - The knowledge represented in the data (and its schema) is complete
 - E.g., if a code appears in the list of valid codes it is correct, otherwise it is wrong
- Open World (OWA):
 - The knowledge represented in the data is (knowingly) incomplete
 - E.g., if a code appears in the list of valid codes it is correct, otherwise it is not possible to tell for sure

CWA – Accuracy : Genomics

- Human genes are known and coded, each has a predefined symbol
- Any code not included in those predefined represents a syntactic accuracy error
- E.g. code 'SEPT2'(Septin-2) when imported into is automatically turned into 'February 2'

OWA – Accuracy

How to decide what is accurate?

- Rules that define what is syntactically correct
 - E.g. regular expressions
- Constraints to define what values are semantically acceptable
 - E.g. validity interval

Where do rules come from?

- Standard
- Domain knowledge
- Similar data
- Past data

OWA: Email per RFC-5322

```
\A(?:[a-z0-9!#$%&'*+/=?^_`{|}~-]+(?:\.[a-z0-
9!#$%&'*+/=?^``{|}~-]+)*
| "(?:[\x01-\x08\x0b\x0c\x0e-\x1f\x21\x23-\x5b\x5d-
x7f1
         \[\x01-\x09\x0b\x0c\x0e-\x7f])*")
      @ (?:(?:[a-z0-9](?:[a-z0-9-]*[a-z0-9])?\.)+[a-z0-
9] (?: [a-z0-9-]*[a-z0-9])?
  | \[(?:(?:25[0-5]]2[0-4][0-9]][01]?[0-9][0-
9]?) \ . \ 3\}
 (?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?|[a-z0-9-]*[a-
z0-9]:
           (?: [x01-x08x0bx0cx0e-x1fx21-x5ax53-
x7f]
              \left( \frac{x01-x09}{x0b} \times 0c \times 0e^{x7f} \right) + \right)
           I
     1)
```

OWA: Email per RFC-5322

Completeness

- Computer: presence of all necessary values
 - Both to entity occurrences and to attributes of a single occurrence
 - Note: not all missing values constitute a completeness issue
- User: how much the available data is capable of satisfying the needs

Completeness

REINVENTING THE WIPER

Number of windshield-wiper-related patents issued per decade.

Source: http://www.nytimes.com/2014/09/14/magazine/who-made-that-windshield-wiper.html?_r=0

23

Consistency

- Absence of contradictions in the data
 - Referential integrity
 - Often guaranteed in RDBMS
 - Duplication
 - Increase the risk of inconsistency on update
 - Semantic
 - E.g. birth date must be before death date

Consistency in graph data

- Values in a series of data encoded with visual attributes must be comparable
 - Consistent aggregation level
 - Consistent measurement method
 - Consistent target entities

Aggregation level

	Duration		
Period	[years]	Patents	Pat. per year
1920s	20	430	21.5
1940s	20	260	13.0
1960s	20	650	32.5
1980s	20	410	20.5
2000s	10	660	66.0
2010 to present	4	390	97.5

When comparing values corresponding to entities or categories with different *size*, normalized values (i.e. densities) are comparable, absolute values are not!

27

Aggregation level

Source: Corriere della Sera, 09 Settembre 2017

Aggregation level

Range	Size	Count	Density
31-35	5	235	47.0
36-4	5	3109	621.8
41-50	10	16455	1645.5
51-60	10	18093	1809.3
Over 60	10	10989	1098.9
	Ratios:	5.3	2.6 -
		Lie fac	tor $= 2$

Consistent method

- A series of values that are not measured using the same method might not be directly comparable
 - estimate vs. actual, projection vs. final
 - periodic samples collected at different possibly non equivalent times
 - e.g. different period of year, week, day

Consistent target entities

Economist.com

31

Consistent target

	Intenzior di voto 2 (Dati in %)	18	ale uspall	pilito	on parenta Bre	iste ositist	2 501	attalia	allattaip	contraila.	HIC HIC	HOLO HOLO	Different political parties
	Politiche Camera	3,4	18,7	2,6	1,6	17,4	14	4,3	1,3	32,7	4	29,4	
	28 marzo	3	18,8	2,3	1	19,2	13,1	4.2	0,9	33,9	3,6	29,1	
SS	20 aprile	2,7	19,5	2,2	1	19,5	12,9	4,3	0,8	33,5	3,6	28,2	
Poll dates	4 maggio	2,8	18,3	2,2	1	21,2	13,1	3,6	0,9	33,7	3,2	28,9	
Poll	18 maggio	2,4	18,1	1,8	0,8	25,4	12	3,4	0,6	32,6	2,9	28,3	Undecided/NA
	31 maggio	3,1	19,2	2	0,6	28,5	9	3.9	0,5	30,1	3,1	32,6	
	13 giugno	2,6	18,6	2	0,3	30,1	8,7	29	0,6	29,9	4,3	34,9	
	27 giugno	2,3	18,9	2,8	0,8	31,2	8,3	23	0,4	29,8	3,2	34,9	
	19 luglio	2,5	17	2,8	0,5	31	7,7	3	0,2 •	31,5	3,8	33,5	32

Consistent target

Proportions computed on different reference wholes

$$Undecided = \frac{n_{undec} + n_{NA}}{N_{sample}}$$
$$P_i = \frac{n_p i}{N_{sample} - n_{undec} - n_{NA}}$$

Currency

- Currency is the extent to which data is up-to-date
 - With reference to the reality and
 - With reference to the task at hand
- Lack of information to establish currency is an Understandability issue

33

Credibility

- The extent to which data are regarded as true and credible by users
- What is the source of the data showed in the graph?

Understandability

- The extent to which data can be read and interpreted by users
- How is data measured? Is there a track of how values are collected, measured or estimated?
 - If multiple multiple methods are used that might represent an inconsistency issue.

Understandability

Accessibility

 The capability of data to be accessed, particularly by people who need supporting technology or special configuration because of some disability

Color-blind simulation

Precision

- The capability to provide the degree of information needed in a stated context of use
 - Enough information to allow discriminate
 - Not too much to overload reader
 - Related to "Utility"

Precision

Precision

References

- ISO/IEC 25010 System and software quality models
- ISO/IEC 23012 Data Quality model
- ISO/IEC 25024 Measurement of data quality