The Java Environment

s l?iSC} ftEng
AP T o metie Version 1.1 Oct 2006

Learning objectives

» Understand the basic features of Java
* What are portability and robustness?

» Understand the concepts of bytecode
and interpreter

¢+ What is the JVM?
» Learn few coding conventions
* How shall | name identifiers?

SOftEng

Java timeline

= 1991: SUN develops a programming
language for cable TV set-top boxes

* Simple, OO, platform independent

» 1994: Java-based web browser
(HotJava), the idea of “applet” comes
out

» 1996: first version of Java (1.0)

Java timeline (cont’d)

* 1996: Netscape supports Java
¢ Popularity grows

* 1996: Java 1.02 released, followed by many
updated releases in close rounds

* 1997: Java 1.1 released, major leap over for
the language

* 1998: Java 2 platform (1.2 ver) released
(libraries)

* 2005: Java 5 (language enhancements)

* New features marked with ‘g_{)

SOftEng S—

OO language features

* OO0 language provides constructs to:

* Define classes (types) in a hierarchic way
(inheritance)

* Create/destroy objects dynamically

* Send messages (w/ dynamic binding)
* No procedural constructs (pure OO

language)

* no functions, class methods only

* no global vars, class attributes only

Java features

» Platform independence (portability)
* Write once, run everywhere
* Translated to intermediate language
(bytecode)
¢ Interpreted (with optimizations, e.g. JIT)
= High dynamicity
* Run time loading and linking

¢ Dynamic array sizes
= Automatic garbage collection

SOftEng

Java features (cont’d)

* Robust language, i.e. less error prone
* Strong type model and no pointers
~ Compile-time checks
¢ Run-time checks
=~ No array overflow
¢ Garbage collection
~ No memory leaks

* Exceptions as a pervasive mechanism to
check errors

Java features (cont’d)

= Shares many syntax elements w/ C++
¢ Learning curve is less steep for C/C++
programmers
= Quasi-pure OO language
* Only classes and objects (no functions,
pointers, and so on)
* Basic types deviates from pure OO...
= Easy to use

SOftEng

Java features - Classes

* There is one first level concepts: the

class
public class First {

}
= The source code of a class sits in a
.Java file having the same name

* Rule: one file per class
* Enforced automatically by IDEs

Java features - Methods

* |[n Java there are no functions, but only
methods within classes

* The execution of a Java program starts
from a special method:
* public static void main(String[] args)
* Note
¢ return type is void

* args[0] is the first argument on the
command line (after the program name)

Build and run

>
oy
@)

o)

Java
Virtual Machine

jJavac First. java

Java compiler

i
o W jJava -cp . First

|: bytecode

[;Note: no extension |

Building and running (simple)

Build environment Run-Time environment

Java Source Byte code
(java) Loader
—

Byte code
Java Compiler Verifier
(javac)
R
4 AW
Just In Time (JIT)
Interpreter Compiler
Java ByteCode S 3
Machine
Run time I (VM)
OS/HW .

Example

* File: First.java:
public class First {
public static void main(String[] args){
int a;
a = 3;
System.out.printin(a);
ke
+

Java features (cont’d)

= Supports “programming in the large”

¢ JavaDoc
¢ Class libraries (Packages)

= Lots of standard utilities included

* Concurrency (thread)
* Graphics (GUI) (library)
* Network programming (library)
~ socket, RMI
~applet (client side programming)
SOftEng

Types of Java programs

= Application
*It’s a common program, similarly to C
executable programs

¢ Runs through the Java interpreter (Java)
of the installed Java Virtual Machine

public class HelloWorld {
public static void main(String args[]){
System._out.printIn(““Hello world!””);

}

}

Types of Java programs

= Applet (client browser)
¢+ Java code dynamically downloaded
* Execution is limited by “sandbox”
= Servlet (web server)
*In J2EE (Java 2 Enterprise Edition)
= Midlet (mobile devices, e.q.
smartphone and PDA)
* |n J2ME (Java 2 Micro Edition)

SOftEng

Java development environment

» JSE 1.5.0_08

¢ javac compiler
+ jdb debugger

+ JRE (Java Run Time Environment)
~ Interpreter
~ Native packages (awt, swing, system, etc)

* Docs

¢ http://java.sun.com/j2se/1.5.0/docs/
* Eclipse editor

¢ http://www.eclipse.org/

Coding conventions

= Use camelback capitalization for
compound names, not underscore

= Class name must be capitalized

= Method name, object instance name,
attributes, method variables must all
start in lowercase

= Constants must be all uppercases (w/
underscore)

* Indent properly

SOftEng

Coding conventions (example)

class ClassName {

const double Pl = 3.14;
private int attributeName;

public void methodName {

int var;
if (var==0) {
+
}
ks
SQftEng

Wrap-up session

* Java is a quasi-pure OO language
* Java is interpreted

* Java is robust (no pointers, static/dynamic
checks, garbage collection)

* Java provides many utilities (data types,
threads, networking, graphics)

* Java can used for different types of
programs

* Coding conventions are not “just aesthetic”

SOftEng

20

FAQ

* Which is more “powefull’: Java or C?

* Performance: C is better though non that
much better (JIT)

* Ease of use: Java
¢ Error containment: Java
* How can | generate an “.exe” file?

*You don't do it. Use an installed JVM to
execute the program

* GCJ): http://gcc.gnu.org/java/

FAQ

* | downloaded Java on my PC but |
cannot compile Java programs:
¢ Check you downloaded Java SDK

(including the compiler) not Java RTE or
JRE (just the JVM)

* Check that the shell path include
pathToJava/bin

* Note: Eclipse uses a different compiler
than javac

SOftEng

FAQ

» Java cannot find a class
(ClassNotFoundException)
* The name of the class must not include
the extension .class:
~ Es. Java Prova
¢ Check you are in the right place in your
file system

~ java looks for classes starting from the
current working directory

