
1

Organization of a java 
program

Program, files and classes
A program is made of many classes
A class is in one file
A file usually contains one class

Can also contain more than one, but only 
one public

Name of file must be == name of 
public class

Program File Class
1..n 1..n

Packages
Packages add one more level
Package is implemented via a directory

name of directory == name of package

Package File Class
1..n 1..n

Program

1..n

Ex
Class Helloworld,  classe Foo on two 
files

public class HelloWorld {
public static void main(String args[]){

System.out.println(“Hello world!”);
Foo b = new Foo();
b.print(); }}

File HelloWorld.java

public class Foo {
public Foo(){}
public void print(){

System.out.println(“Hello Foo;”)
} 

}

File Foo.java

Ex
Class Helloworld, class Foo on one file

Foo visible only in the package where it is 
defined

public class HelloWorld {
public static void main(String args[]){

System.out.println(“Hello world!”);
Foo b = new Foo();
b.print(); }}

File HelloWorld.java

class Foo {
public Foo(){}
public void print(){

System.out.println(“Hello Foo;”)
} 

}

Organization
Files and folders are a way to organize 
program

And
Impact visibility 



2

Interpreter vs compiler

Interpreter vs. compiler
Java: interpreted
C: compiled

Compiling, running a C program
Steps

Compile (several files)
– Syntactic check (on each file separately)
– Translate in machine code (.o) 

Link
– Put together .o files (addresses are 

rearranged)
– Produces one executable file

Load and run 
– load executable (one file)
– Executable takes control of CPU

C program
Module1.c

compiler (windows)

Module1.o

linker (windows)

Program.exe

windows

Module2.c

Module1.o

Compilation
The resulting program depends on the 
target environment

Exe file runs on Windows, not on Linux
Portability is possible, but requires re-
doing all steps
Static link

C program

Module1.c

compiler (windows)

Module1.o

linker (windows)

Program.exe

windows

compiler (linux)

linker (linux)

program.exe

linux

Module2.c

Module1.o Module1.o Module1.o



3

Compiling, running a Java program
Steps

Compile (several files)
– Syntactic check (on each file separately)
– Translate in byte code (.class) 

Run 
– The Java interpreter (JRE) takes control of CPU
– Only one file is loaded at a time

– Others are loaded when needed dynamic loading 
and linking

Java program
Class1.java

JavaC

Class2.class

JavaWindows.exe

windows

Class2.java

Class1.class

First runs the 
class with main()

Interpretation
The interpreter program depends on 
the target environment

JRE runs on Windows, not on Linux
The .class files run everywhere
Portability is obtained

Java program
Class1.java

JavaC

Class2.class

JavaWindows.exe

windows

JavaLinux.exe

linux

Class2.java

Class1.class

Java

public class HelloWorld {
public static void main(String args[]){

System.out.println(“Hello world!”);
}

}

File HelloWorld.java

> javac HelloWorld.java
> java HelloWorld
HelloWorld!
>

compile

execute

Rules for compilation (Java)
Compilation (syntactic check + 
production of byte code) is done 
separately (file by file, or class by 
class)
If a class is requested, the compilers 
looks for it in the same directory

public class HelloWorld {
public static void main(String args[]){

System.out.println(“Hello world!”);
Foo b = new Foo();
b.print(); }}

File HelloWorld.java



4

If it is not in the same directory it 
looks

In dir specified by  
– java -classpath <dir> <class.java>

In paths specified by development 
environment (Eclipse)
In system libraries
– ..jre\lib\rt.jar ..jre\lib\i18n.jar 

Rules for execution
Interpreter starts from the class 
indicated by the programmer, loads it, 
looks for main() function, starts 
executing from main

> java HelloWorld2

Interpreter looks for file HelloWorld2.class,
looks for main()

Dynamic loading/linking

> java HelloWorld2
Interpreter looks for file e HelloWorld2.class
Loads it, runs main()

public class HelloWorld2 {
public static void main(String args[]){

System.out.println(“Hello world!”
Foo b = new Foo();
b.print(); }}

Prints  Hello World!

Interpreter looks for file Foo.class, loads it, runs b

When another class is referred, 
interpreter looks for file with same name, 
loads it, executes requested methods

Rules for finding files are same as for 
javac

Check directory of project
Check class path or paths defined by 
programmer in Eclipse


