Organization of a java
program

SOftEng

Program, files and classes

= A program is made of many classes
= A class is in one file

= A file usually contains one class

+ Can also contain more than one, but only
one public

= Name of file must be == name of
public class

1.n 1.n
[rosem o a0 F o |

SOftEng

Packages

= Packages add one more level

» Package is implemented via a directory
+ name of directory == name of package

Program
S

SoOftEng

Ex

= Class Helloworld, classe Foo on two
files

File HelloWorld.java

public class HelloWorld {
public static void main(String args[]){
System.out.println(“Hello world!{) ;
Foo b = new Foo() ;
b.print(); 33

File Foo.java
public class Foo {
public Foo(){}
public void print(){
System.out.println(“Hello Foo;”)

o }

Ex

= Class Helloworld, class Foo on one file

+ Foo visible only in the package where it is
defined

File HelloWorld.java

public class HelloWorld {
public static void main(String args[]){
System.out.println(“Hello world!|") ;
Foo b = new Foo() ;
b.print() ; 11

class Foo {
public Foo(){}
public void print () {
System.out.println(“Hello Foo;”)
}

Organization

= Files and folders are a way to organize
program
+ And

» Impact visibility

SortEng

Interpreter vs compiler

SOnEng

Compiling, running a C program

= Steps
+ Compile (several files)
- Syntactic check (on each file separately)
- Translate in machine code (.0)
+ Link
- Put together .o files (addresses are
rearranged)
- Produces one executable file
¢ Load and run
- load executable (one file)
sof F—é@(‘.eéutable takes control of CPU

Compilation

» The resulting program depends on the
target environment

+ Exe file runs on Windows, not on Linux

= Portability is possible, but requires re-
doing all steps

= Static link

SoOntEng

Interpreter vs. compiler

» Java: interpreted
= C: compiled

SOnEng

C program

=

SOrtEng

C program

Compiling, running a Java program

= Steps
+ Compile (several files)

- Syntactic check (on each file separately)
- Translate in byte code (.class)

+ Run
- The Java interpreter (JRE) takes control of CPU

- Only one file is loaded at a time

- Others are loaded when needed - dynamic loading
and linking

SOnEng

Java program

==

Firstrunsthe _— (\

class with main()
SOrntEng =

Interpretation

» The interpreter program depends on
the target environment
+ JRE runs on Windows, not on Linux

» The .class files run everywhere

= Portability is obtained

SoOrtEng

Java program

Java

File HelloWorld.java

public class HelloWorld {
public static void main(String args[]){
System.out.println(“Hello world!();

}

compile

> javac Helloworld.jav/
> java HelloWorld
TT———— execute

HelloWorld!
>

SoOntEng

Rules for compilation (Java)

= Compilation (syntactic check +
production of byte code) is done
separately (file by file, or class by
class)

= |f a class is requested, the compilers

looks for it in the same directory
File HelloWorld.java

public class HelloWorld {
public static void main(String args[]){

\\ System.out.println(“Hello world!();
Foo b = new Foo() ;
b.print(); 33

SoOntEng

= [f it is not in the same directory it

looks

+ In dir specified by
- java -classpath <dir> <class.java>

+ In paths specified by development
environment (Eclipse)

+ In system libraries
- ..jre\lib\rt.jar ..jre\lib\i18n.jar

SOftEng

Rules for execution

» [nterpreter starts from the class
indicated by the programmer, loads it,
looks for main() function, starts
executing from main

> java HelloWorld2

Interpreter looks for file HelloWorld2.class,
looks for main()

SOftEng

Dynamic loading/linking

+ When another class is referred,
interpreter looks for file with same name,
loads it, executes requested methods

> java HelloWorld.
] 2\ Interpreter looks for file e HelloWorld2.class
Loads it, runs mai?()

public class HelloWorld2 {
public static void main(String args[]){

Prints HelloWorld! . _———— System.out.println(“Hello world!”

Foo b = new Foo();
/ b.print(); 1}

Interpreter looks for file Foo.class, loads it, runs b

SoOftEng

= Rules for finding files are same as for
javac
+ Check directory of project

+ Check class path or paths defined by
programmer in Eclipse

SoOftEng

