Java Graphics Programming

Difference Frame - Applet - Window

Frame Applet Window

| Be B ger I
" ~-r@adt
Aess [B) C yarsiesereint tind

\ Window

Button Panel Applet

SoOftEng

Package java.awt.*

Provides the following features :
= Components: button, checkbox, scrollbar, etc.

= Support for secondary “containers”: they are still
components!

= Management:
e System events
o events generated by the users on parts of IU
= Layout: the components are included in the
platform

SOtEng

Concepts of graphical programming

= Set a Look & Feel (= Style)
e Microsoft > Windows style
e Macintosh > Mac style
e Java > Metal style
= Define one (or more) principal container
e Window, Frame, Applet
= add components to the containers
¢ Button
¢ RadioBox
e Ecc.
e Arrange the components/containers according to a

_layout
SOftEng

Procedure

Define style

(UIManager.setLookAndFeel)

0

Defining a ‘main’ container

(Frame myFrame = new Frame()

L 4 ®

Add component <+— Add secondary container

(myFrame.add (button))

(Panel myPanel = new Panel()

SOftEng U

Sub-classes of Component in java.awt

Component

N
| canvas | Container | ‘TextCorqponent
‘ Panel ‘ ‘ Window ‘ ‘ TextField ‘
| Applet | | Frame | | Dialog |

SOftEng

Package javax.swing

Define a style (step 1 of 4)

contains the same components of java.awt, but
with the different name (jbutton, jframe, etc.)

= All these components derive from JComponent

= Advantages:

provides a series of components ‘light’ (light-
weight) has the same appearance/behaviour on
all platforms

Look and feel is changeable to flight

= swing it is an extension of AWT - however
management of the events in the two package is
different

SoOftEng

Example of Look & Feel

= The class of reference is UIManager, which belongs to the
package java.lang
= Possibility:
« UlManager.setLookAndFeel(
"com.sun.java.swing.plaf.windows.WindowsLookAndFeel");
« UlManager.setLookAndFeel("com.sun.java.swing.plaf.motif
.MotifLookAndFeel");
o UlManager.setLookAndFeel("javax.swing.plaf.mac.MacLoo
kAndFeel"); > only on MACINTOSH platforms
o UlManager.setLookAndFeel("javax.swing.plaf.metal.MetalL
ookAndFeel"); [DEFAULT]
= By default the class UIManager must always precede made by
a block try.. catch

SoftEng

Set a container (Step 2 of 4)

ol
Spingi Premi Push —-

=
W e

SoOftEng

A complete example

= Steps:

o the class must extend the container chosen
(Class my_container extends jframe)

o It is necessary to create at first a secondary
container and describe it as ‘inside’ (jpanel
jpanel = new window (); (...) setcontentpane
(window))

e components must be added to Window:
pressbutton window.add (pressbutton);

SoftEng

Basic Functions of containers

import javax.swing.; pane.add(usernameLabel);
pane.add(username);
public class MyForm extends JFrame{ pane.add(passwordLabel);
pane.add(password);
private JTextField username = new pane.add(commentLabel);
JTextField(15); pane.add(commentLabel);
JPasswordField password = new pane.add(textArea);

JPasswordField(15);

setContentPane(pane);
JTextArea textArea = new JTextArea(4,15);

) setvisible(true);
public MyForm() {

super(‘Feedback Form");
setSize(360, 160);
setDefaultCloseOperation(EXIT_ON_CLOSE);

public static void main(String[] arguments) {
MyForm form1 = new MyForm();
form1.setvisible(true);

i

JPanel pane = new JPanel0;

JLabel usernamelabel = new
JLabel("Username: ");

JLabel passwordLabel = new
Label("Password: ");

JLabel commentLabel = new
JLabel(*Comments: “);}

Commentt:

SOtEng

= Messages (MSG) in the closure of the Windows= in
the form “setDefaultCloseOperation(msg)”

e EXIT_ON_CLOSE

o DO_NOTHING_ON_CLOSE
o DISPOSE_ON_CLOSE

¢ HIDE_ON_CLOSE

= SetSize(int base, int altezza) > defines the
dimensions of the panel outside

= setBounds (int xSupSin, int ySupSin, int base, int
height) - it specifies the position in which it is
initially the panel

= insert the secondary container in primary:
primarycont.setcontentpane (secondarycont);

SOftEng

Insert component (step 3 of 4)

Component Swing - Label

Component Swing - Button

= JLabel(); create label empty, aligned on the left

= JLabel(String); create label with given text, aligned
on the left

= JLabel(String, int); create label with given text,
aligned as specified in the second parameter
(SwingConstants.LEFT, SwingConstants.RIGHT,
SwingConstants.CENTER).

= Activated methods on a label : getText(),
setText(String), getAlignement(),
setAlignement(int).

SoOftEng

button is a component: initiates action with the
pressure event.
button is created by the manufacturers:
e JButton(); creates a button without a text
(without label)
e JButton(String); creates a button with a label
containing the text.
it is a component - inherits all the methods of
classes JComponent (javax.swing) and component
(java.awt)
It is a container - inherits all methods of
java.awt.container.class
SOftEng

Swing Component - Text fields

Swing Component - Text fields

= Need to manage more than a line of text for time .
= Builders:

o JTextArea (int1, int2) = intl: nr. lines, int2: nr
columns

o JTextArea (String, int1, int2) - is a default text
= Useful Metods:
e getText(), setText(String);
e append(String), insert(String, int);
o void setLineWrap(boolean) = if true, the lines will

be wrapped if they are too long to fit the allocated
space, if false lines will be unwrapped

o void setWrapStyleWord(boolean) - it must be at
the head with the whole word

SOftEng

= The text fields allows the introduction of strings of
text to be part of the user.

= To create a text field using the manufacturers :
e JTextField();

3< JTextField (String), JTextField (String, int), ...

Example e 3 -n
tf1 = new JTextField(; £r3 T
t2 = new JTextField(", 20);

el

tf3 = new JTextField("Hello"); A
tf4 = new JTextField("Hello",30); applet startad
SOftEng

Swing Component - Control/Option

= check boxes : JCheckBox(String, boolean)
= Option buttons: JRadioButton(String, boolean)
= Useful methods :

e void setSelected(boolean) = with true, set the
boolean component to ‘on’

e boolean isSelected() = return true if the
component is turned on

= by default are non-exclusive: can be found more Lit
in contemporary radiobutton

= to ensure the mutual exclusion : il RadioButton (or
CheckBox) are added to a ButtonGroup

SOftEng

Example

Components Swing - Dialogue box

public class Authors extends JFrame!

JRadioButton[] list = new JRadioButton(4];
public Authors({
super(‘Select an author”);
setSize(140, 190);
setDefaultCloseOperation(Frame.EXIT_ON_CLOSE);
list[0] = new JRadioButton(‘Jehoshua”, true);
list[1] = new JRadioButton("McEwan");
list[2] = new JRadioButton("Tamaro®);
list[3] = new JRadioButton(‘Steel");
JPanel panel = new JPanel(;
ButtonGroup group = new ButtonGroup();

for (int i = 0; i < listlength; i++) {
group.add(ist(i));
panel.add(listfil);

}

setContentPane(panel);

setvisible(true);

} public static void main (String args[]) {
Authors newlista = new Authors(; }

y SOftEng

Dialogue windows for confirmation

= They're used to receive input, provide information,
advise the user, etc.

= Option:
o Confirmation windows
e Input and dialog boxes
e Message and dialog windows
« Dialog and option windows

* Methods more efficient than input/output in order
to redd fepm keyboard

ions are a much more efficient method of

= each wmdow is managed by a different method of
the’safi&CGlass (JOptionPane.class)

JOptionPane Features

Every dialog is dependent on a Frame component.

A swing JDialog class inherits this behavior from the
AWT Dialog class.

Example:

JOptionPane.showMessageDialog(frame, "Eggs are not
supposed to be green.");

=\
\L) Eggs arent supposedto be green.

SOftEng

JOptionPane Features: examples

Using JOptionPane, you can quickly create and
customize several different kinds of dialogs.
JOptionPane provides support for laying out standard
dialogs, providing icons, specifying the dialog title
and text, and customizing the button text.

Icons used by JOptionPane
(Java look and feel)

B @© A @
question infarmation warning error
(Windows look and feel)
= 2
¥ W

question infarmation warning error

SOftEng

showOptionDialog

detault title and 1con
I0ptiunPane. shosessageDislaq (frase
g5 are not supposed to be green.*
“Hessage”)

(i) £oos arent suppesed to be green

/Hcusten tatle. warning ic

ToptiorFane, showessa aeoialog frame
“ERs are not supposed 0 be green.”
“Tnane warmins

A\ eos st sumprsanto be green 9
a4 = - J0B 1 0Pans NARNING PESSAGE)

&l

euston title, error icon
JpticaPans. shawtessageDialog (f rane
“Egqs are not supposed %o be green.

Y -
A T e e

o

P
e B 5
: it
R Sy e
LT
&=

SOftEng

ASilly Question

Displays a modal dialog
with the specified
buttons, icons, message, Yes.piease || Mo,manks | [Moeggs nonami|

2| Would you live some green eggs to o with hat ham?

title, and so on. With this
method, you can change
the text that appears on
the buttons of standard
dialogs. You can also
perform many other kinds
of customization.

SoftEng

/fCuston bution text
Objectl] options = {*Yes, please’,
r\n. thanks”.
Mo eggs, ne hant“};

int n = JoptionPane. shovOptionDialog (frame,

“Would you Like some green eggs to go °

3 that han?"

Silly Question’.

J0ptionPane. YES_NO_CANCEL_OFTION,

J0ptionPane. QUESTION_MESSAGE.

null,

options.

optionsizl):

Dialogue windows for input

= The reference method is showinputdialog

= Primitive: String showInputDialog(Component, Object)

= Alternative: String showlnputDialog(Component, Object,
String, int)

« Component: in which component appears window

Object: Request message input

String: title

int: type of message (Same encoding of the window of

confirmation)

= Input is immediate : String answer =
JOptionPane.showlnputDialog(null, “Your sweet preferred ?”,
“answers...”, JOptionPane.QUESTION_MESSAGE)

SoOftEng

LAYOUT

Operators of layout in Java

Exercise

= Create Java application able to take input from user
information

o Name of the internet site
o URL address

o General information {personal, business,
educational}

= with them, create three couples Labels/lines of
text (Label = "Name", text = inserted by User)

= try to change the size of main panel

= finally, before adding the components to the panel
, use pannel.setLayout(new GridLayout(3,2)), and
try again to modify the dimensions

SoftEng

What is a layout?

= Layout - indicates where the components are located
= Operators of layout > Determining the method of disposal of the
same components (import java.awt.*)
= A panel <> an operator of layout
= Therefore: different panels can have different operators
= Methodology:
o Create a body by the class of the operator:
FlowLayout f = new FlowLayout()
o Create a panel, and first assign the operator :
JPanel panel = new JPanel();
panel.setLayout(f);
o After, add the components to the panel:
panel.add(JButton); (...)

SOtEng

= All the former examples graphs, when resized,
allow the relocation of the components:

£ s cha dii (=] 1|
P L Originale (140 x 190)

Ridimensionato
(300 x 100)

= this behavior is a necessity: Java adapts to many
platforms (display in different way for different
systems)

= Solution in Visual Basic - available ‘absolut’(x,y)
SOftEng

Operators of layout - FlowLayout

= Itis the base layout of applciations/graphics applets
= Disposition: from left to right, starting from the left most corner
in the top
= Builder:
e FlowLayout f = new FlowLayout();
o FlowLayout f = new FlowLayout(int align);
o FlowLayout f = new FlowLayout(int align, int hgap, int vgap);
= Builder elements:
o align: Alignment of basis (FlowLayout.LEFT,
FlowLayout.RIGHT, FlowLayout.CENTER)
« hgap: Horizontal space between components (default: 3
pixel)
e vgap: Vertical space between components (default: 3 pixel)

SOftEng

Example of FlowLayout (default in Java) Operators of layout - GridLayout

Bt Foe an Flat apaul llista o

= splits the screen in a grid of rows and columns
Cdestra T = filling: the box in the top left Builders:
Loz s] e GridLayout g = new GridLayout(int rows, int cols);
Comiments: /

o GridLayout g = new GridLayout(rows, cols, hgap, vgap);
= Subjects:

e rows: number of row;
e cols: number of columns;

« hgap: Spacing (in pixels) between two horizontal boxes
< (default. 0 pixel

\ iz | G « vgap: spacing (in pixel) between two vertical boxes
(default: 0 pixel)
pro—

SoOftEng

SOftEng

Example of GridLayout

Operators of layout - BorderLayout
ORI — ainix|

split into five areas (“North”, “South”, “East”, “West”, “Center”)
o _ 4row. 1 columns: = The filling is ‘targeted on’:
i JPanel pannel = new JPanel();
BorderLayout b = new BorderLayout();
pannel.setLayout(b);

[0 metore =l 2 row, 2 columns:

g r i pannel.add(*North”, buttonNord);
p— MeEwan __— distance0 pixel ey @ U =
= one — pannel.addCWestbutton0
(Distanza min = 0) Etc...
Which

Whatareaof component L

thesereen add
Enm_“__' — 2 row, 2 columns: [ene s m ot = Alternative builder: BorderLayout(int1, int2), Where the two
s . . distance 10 pixel - * dehosiua) McEman issues are the spaces between the components related
O Twn S St e B Bt horizontal and vertical

(Min distance = 10)
SoftEng

SOftEng

Operators of layout - CardLayout Example of CardLayout

= The last two operators have properties advanced

= With CardLayout is possible to have different
panels in the frame, but only one show to time

= the panels are called cards

T omer |

Card = secondary Vindows | Cner

[* Gotaris [Macos

= Metodology:
e Create a primary panel
o Its layout is CardLayout
e create secondary panels
¢ add them to primary :
panPrimary.add(“Secondary
Title”, secondaryName)
SOMtEng

o EmT T =
2 sy
[N T |

S

s
o =

Primary panel

[¥ Windows 98 [Winelmws NTr2000
panel
2z
e T

+ The two cards are mutually exclusive: when the first becomes
visible, the second shall enter in the background and vice versa

+ How make them visible?

We must act through the operator itself:

CardLayout ¢ = new CardLayout;
c.show(OneOfPanel, “PanelName”);

SOftEng

Operators of layout - GridBaglLayout

Extension of the layout to grid (GridLayout)
is possible to adjust the elements of the grid
with mechanisms of personalization

METHODOLOGY OF USE :
- Create a body of class GridBagLayout
- Create a body of ‘regolation tool' (class
GridBagConstraints)
1. Regular each component
2. Inform the operator of adjustments
3. Made add components to the panel

SoOftEng

Exercise

GridBagConstraints in detail

= The previous project can be seen in a schematic
way in the following way :

JTextFleld zone
JLabell zone H
i 4 AxlsX

[0 @)
JLabel2 zone . (Oé), (1’1) <. JPasswordField
©2]1D

N JButton “OK” zone
AxisY

SoOftEng

= To understand the meaning of regulations, try to
create a component of this type:

& v ot cprmmmord TSI
‘ome:] 1
Password:]

| oK

SOftEng

Regolation on GridBagConstraints (1)

Regolation on GridBagConstraints (2)

< Constructor GridBagConstraints has different parameters:

e gridx - The initial gridx value.

o gridy - The initial gridy value.

e gridwidth - The initial gridwidth value.
« gridheight - The initial gridheight value.
« weightx - The initial weightx value.

« weighty - The initial weighty value.

« anchor - The initial anchor value.

o fill - The initial fill value.

e insets - The initial insets value.

e ipadx - The initial ipadx value.

e ipady - The initial ipady value.

SOftEng

1.

Components are put in the cells of positions (x,
y)
"OK" button must occupy two cells: the other
components are in a single cell
breadth of the components is variable (the label
"name" occupies about 30% of line...)
Cells are positioned (the "OK" button is centered,
etc.)

SOftEng

Regolation on GridBagConstraints (3)

The values of fill are : BOTH, NONE, HORIZONTAL,

VERTICAL

The values of anchor are: CENTER, NORTH,

NORTHEAST, EAST, SOUTHEAST, SOUTH,
SOUTHWEST, WEST, NORTHWEST

Therefore... [Gridsaglayout grid = new GridBagLayout0);

pannel.setLayout(grid);

GridBagConstraints Gbc = new GridBagConstraints();
JLabel labell = new JLabel (“Name:”, JLabel.LEFT);
Gbc.gridx = 0;
Gbc.gridy = 0;
Gbc.gridwidth = 1;
Gbc.gridheigth H
Gbc.weightx = 30;
Gbc.weigthy = 40;

Gbc.fill = GridBagConstraints.NONE;
Gbc.anchor = GridBagConstraints.EAST;

N grid.setConstraints(Gbc, label1);
SO ftEng|pannello 1);

Java Events

Event Delegation Model

e Whenever an event occurs the AWT
thread send a message to all the
registered listener objects (the event is
passed as a parameter)

o A listener object must implement
appropriate interface (to make possible
the call-back)

SoOftEng

Event

= The events are represented by a hierarchy of
classes. Each class is defined by the data
representing that type of event.

= Some of the classes that are a set of events
(mouseevent) MAY CONTAIN AN ID that identifies
the exact class.

SOtEng

Event Delegation Model

= From Javal.l
e Events are classified by type (MouseEvent,
KeyEvent, ecc.)
* Events are generated in components sources

¢ An object can be registered as listener (listener)
of a type of event by sending a message to the
component source

SoftEng

Event Delegation Model

java.util.EventListene:

implements

Multiple listeners can
register to be notified of
events of a particular type
from a particular source. Listener Event Source
Also, the same listener can

listen to notifications from

different objects.

send_events_to

aClass aComponen

st

SoftEng

Example

A Button . Subject source

addActlonLlistener(UnOggetto)

addActionListener(Object)

object Listener

An event (the button is pressed) (implementa ActionListener)

An ActlonEvent
An object
N actionPerformed(UnActionEvent) actionPerformed
Subject event (ActionEvent)

SOftEng

Events in Java: sources and types

Source Event

Button ACTION events - when the button
is push
Box of choice ELEMENT events - select/deselect

Menu ACTION event > when you select a
menu item;

ELEMENT event > when a selectable
menu item is activated

Window WINDOW events - when the
window is
activated,maximized,minimized,...

etc.

SOitEng

Management of the events in Java

= Problem: We must make receptive interface Java
= Events covered in Java :
% Action event 2> cfick a button
% Adjustment event - Actions on scroll bars
& Focus event > Point the mouse on a text field

% |tem event = c/ic on RadioButton,
CheckBoxButton

% Key event > keyboard input
% Mouse event = click (not covered above)

% Mouse-motion event > Simple displacement
of the mouse

% Window event > Enlarge, close a window

SoOftEng

An example of management of the events
(2/4)

public void mouseClicked(MouseEvent me) {
mouseX = 0;
mouseY = 10;
System.out.printin(“noted mouse click.");

}

public void mouseEntered(MouseEvent me) {

mouseX = 0;

mouseY = 10; // Position of the entry' = in the top left (under the edge
of the frame)
System.out.printin(“Mouse is in sensible zone.");

}

public void mouseExited(MouseEvent me) {
mouseX = 0;
mouseY = 10;
System.out.printin(“Mouse is out of sensible zone.");

}
SOftEng

Difference between ‘selection - activation’

=lol x|
Fie
o
cony

Pate ‘

o

Testng

Actlvation > event of selection > event of
element Debug is on. on > e
Tastngls ot
e —
SoOftEng

An example of management of the events

(1/4)

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class MouseEvents extends JFrame implements MouseListener,
MouseMotionListener {

int mouseX = 0, mouseY = 0;

public MouseEvents() {
super(“Mouse Events");
setSize(300,120);
setDefaultCloseOperation(EXIT_ON_CLOSE);
JPanel pannello = new JPanel();
pannello.addMouseListener(this);
pannello.addMouseMotionListener(this);
setContentPane(pannello);
setVisible(true);

}
SOftEng

An example of management of the events
(3/4)

public void mousePressed(MouseEvent me) {
mouseX = me.getX();
mouseY = me.getY();
System.out.printin("Mouse push");

}

public void mouseReleased(MouseEvent me) {
mouseX = me.getX();
mouseY = me.getY();
System.out.printin("Mouse release");

}

public void mouseDragged(MouseEvent me) {
mouseX = me.getX();
mouseY = me.getY();

System.out.printIn("You are dragging the mouse in personal data " +
mouseX + ", " + mouseY);

}
SOftEng

An example of management of the events
(4/4)

public void mouseMoved(MouseEvent me) {

System.out.printIn(" You are moving the mouse in personal data " +
me.getX() + ", " + me.getY();
}

public static void main (String argsl[]) {

JFrame frame = new MouseEvents();

}

SoOftEng

How to manage events in Java

How to manage the events in Java

class FrameWithEvents extends JFrame implements
InterfaceWithEvents {

JComponent componentSourceofEvents = new
JComponent();

componentSourceOfEvents.addListener(this);

void methodOfThelnterfaceWithEvents() {...}

void anotehrMethodOfThelnterfaceWithEvents() {...}
}//end class

SoOftEng

= The principle underlying the events is quite similar
to the exceptions :

e the class declares which event is able to deal
with (one or more) > implements one or more
interfaces

e joins a listener to components that are source of
events (jbutton, jtextfield, etc..) >
JButton.addActionListener(this)

e Pay attention!You're implementing interfaces, so
you must overwrite all methods of those
interfaces!

SOftEng

Event Interfaces (1)

Event Interfaces (2)

4.MouseListener (> Methods to rewrite :
¢ void mouseClicked (MouseEvent evt)
¢ void mouseEntered (MouseEvent evt)
¢ void mouseExited (MouseEvent evt)
¢ void mousePressed (MouseEvent evt)
¢ void mouseReleased (MouseEvent evt)

5.MouseMotionListener (> Methods to rewrite :

¢ void mouseDragged (MouseEvent evt)
¢ void mouseMoved (MouseEvent evt)

SOftEng

§ ActionListener > Methods to override :

e void actionPerformed (ActionEvent evt)
§ Focuslistener > Methods to overwrite :

e void focusGained (FocusEvent evt)

¢ void focusLost (FocusEvent evt)
§ ItemListener > Methods to rewrite :

¢ void itemStateChanged (ItemEvent evt)

SOftEng

Event Interfaces (3)

6. KeyListener > Methods to rewrite :
o void keyPressed (KeyEvent evt)
o void keyReleased(KeyEvent evt)
o void keyTyped(KeyEvent evt)
7. Windowlistener (> Methods to rewrite :
o void windowActivated(WindowEvent evt)
o void windowClosed (WindowEvent evt)
¢ void windowClosing (WindowEvent evt)
e void windowDeactivated (WindowEvent evt)
¢ void windowDeiconified (WindowEvent evt)
¢ void windowlconified (WindowEvent evt)

o void windowOpened (WindowEvent evt)
SoOftEng

Add a listener

. Two equivalent methods :
e the component adds on itself listener
— JButton.addActionListener(this)
e The main panel (ad es. JFrame) adds listeners to
components JFrame.addActionListener(JButton)
. how to deal with the event ?
1. find out who has created the event
Object ob = evt.getSource();
if (ob == ButtonSelfDestruction) // Please note the
operator ‘=="
destroyAll();
- Manage the event with the methods of classes relating
(KeyEvent.class, WindowEvent.class, ecc.)

SoOftEng

Exercise

How to manage events

Every function that appears at the interfaces presents a

common argument (KeyEvent, MouseEvent, etc.)
Each argument is an object and it provides methods to
get information about the event:

Esempi :
e ActionListener

- String getActionCommand(): returns a string
identifying the component which generated the
command

- String paramString(): returns a string describing
the event type (common to all event objects)

SoOftEng

= CardLayout presented before has an internal
management of the Events :

e pressing the button "windows" , the box with
options related to Windows is shown

e by pressing the "other" the box with options
related to Windows is shown

= try to obtain this result

ﬁg@ﬁm BE0)
QO VISTA O XP

(B osiselec. —Ex]|
O LINUX T MAC

SoftEng

Methods associated with the event objects

Exercise

= Build a graphic interface for the exercise of voting

« Which portions of the Code must be maintained
intact?

e What you must rewrite ?
e Which may be adapted ?

SOtEng

e ItemEvent:
- int getStateChange(): return SELECTED or DESELECTED on
whether the RadioButton or the CheckBox is turned or less
e KeyEvent:
— char getKeyChar(): Returns the character typed by keyboard
- also useful in the case of a case from the keyboard
— int getKeyCode(): Unicode returns the code of the character
- String getKeyText(): STRESSES the events due to keys as
“Insert”, “PageUp”, etc. [NOT modifiers as “Shift” or “Ctrl"]

« WindowEvent:
-Possible events: +Possible methods:
WINDOW_ACTIVATED
WINDOW_CLOSED
WINDOW_CLOSING
WINDOW_DEACTIVATED
WINDOW_DEICONIFIED
WINDOW_GAINED_FOCUS
WINDOW_ICONIFIED

SoftEng

Window getWindow()
Window getOtherWindow()

For Who has patience (and desire)...

Exercise:
= Write a program Calcolator.java that realizes the functionality
of a simple calculator. Requirements of the graphics
interface:
« 10 buttons with the figures from 0 to 9 prepared as in a
traditional calculator;
Buttons relating to the operations of sum, subtraction,
multiplication and division;
button “CE” To cancel the last number wrought ;
button “C” To clear any operation ;

button“="To claim the result ;

button “.” To insert decimal places;
label to represent the display the calculator.

SOftEng

Observation

= Model the behavior of a "simple" Pocket calculator is
not a simple activity : in order to make this exercise not
too heavy from the point of view of the algorithms, you
can simplify the following algorithm of calculation of
arithmetic expressions introduced with the following
hypotheses:
e The expressions involve always and only 2 operandi ;
e The user inserts always and only the first working
operator, then the second working and the key "=";
the result becomes the first working operator for the
next operation
e The only exception to the rule (2) is the case for
buttons "C", "EC" AND "off" that can be pressed at
any time.

SoOftEng

Algorithm of management (1)

Algorithm of management (2)

If the button pressed is C
buffer = 0
view the buffer
state = NO_OPERATORE
If the button pressed is CE
buffer = 0
view the buffer

=loix|

0.0
i 2 s -]¢<]
o |5 | e | - ||
7 o | o | x| oon|
o - |

SoOftEng

Motivation

= Html pages are static
= applet added
e capacity for processing
e dynamic interaction with the user

SOMtEng

state = NO_OPERATOR
buffer = 0
For each button pressed

if the state is NO_OPERATOR then
If the button pressed is a figure then
queues to buffer the figure
view the buffer

If the button pressed is a sign then °
operator1 = buffer .
operando = segno .
buffer = 0

state = AN_OPERATOR
if the botton pressed is C or CE
buffer = 0
view the buffer
otherwise, if the State is AN_OPERATOR then
If the button pressed is a figure then
queues to buffer the figure
view the buffer
If the button pressed is “=" then
operator2 = buffer
Calculate the term operatore1, a sign, operatore2 and visualizzala buffer =

state = NO_OPERATORE

SOftEng

Applet

Java applet

= programs that require a browser to be carried out
(using environment Run-time of the browser)

= generally small

= Subject to restrictions of security (sandbox): the
browser may prevent them from launch other
applications
e Access to local file system
e access to information on the system that runs

freely

e communicate via network

SOftEng

Constraints Working

= For matters of security * tag <applet> in the html page
« No reading/writing on local file system = The browser ago downloads of Java classes
o) necessary
¢ No communication if not server from which have VM) £ the cl
.
been downloaded generates mstaTce o t”e class page
« No fork processes in local, no execution local " <applet code = “x.class”>
programmes e There is no “main” method

= Browser call the methods on this application, in
function call events or other methods

SoOftEng SOftEng

Characteristics of applet Limits of applet

Java applets are carried out within the WWW browser = applets are subject to many restrictions on their
(hotjava, Netscape), or with the appletviewer provided capacity for security reasons, because “carry out on
in JDK. the local machine.

= Inside a HTML page To insert a pointer to applet, = May not read and write the file system the local
through a specific HTML tags. machine, with the exception of some Directory

specifically indicated by the user;

* When the browser, reading the html page, finds the cannot communicate with other server other than that

tag <APPLET>, Download the applet from the web from which arose-

server. i may not run programs on local file system (for
= The applet is carried out on the local system, the example may not do fork processes);

client, where the browser resides. Ma?/ not load programs local natives of the platform,
u

The applet, because “perform in a graphical environment including libraries DLL .
supported in the browser can use all the capacity of => The compiler and the performer Java perform
management of the graphics, images, user interfaces several checks of consistency and security.
and access network in the browser.
SOftEng SOftEng
Implementation of a Java applet Implementation of Java applet \
= <html>
= <applet code="WelcomeApplet.class" width=300
height=30>
Client Server
(Browser) | 5ad HTML page HTML X.htm| HTTP = </applet>
<HTML> = </html>
<APPLET CODE=X class ...></APPLET>
SHTML import javax.swing.JApplet; // import class JApplet
I Load file X.class import java.awt.Graphics; // import class Graphics
>
JVM public class WelcomeApplet extends JApplet {
m public void paint(Graphics g)
{
_ g.drawString("Welcome to Java Programming!", 25, 25);
g.drawLine(15, 10, 210, 10);
g.drawLine(15, 30, 210, 30); B

SOtEng SOftEng

Es: I am a simple program

= As an application
import java.awt.*; import java.awt.event.*;import javax.swing.*;
public class SwingUI extends JFrame implements ActionListener {
JLabel text, clicked; JButton button, clickButton; JPanel panel;
private boolean clickMeMode = true;
public SwingUI() { //Begin Constructor
text = new JLabel("I'm a Simple Program");
button = new JButton("Click Me");
button.addActionListener(this);

panel = new JPanel(); panel.setLayout(new BorderLayout();
panel.setBackground(Color.white); getContentPane().add(panel);
panel.add(BorderLayout.CENTER, text);
panel.add(BorderLayout.SOUTH, button);

}//End Constructor

SOftEng

Es: I am a simple program

public void actionPerformed(ActionEvent event){
// Object source = event.getSource();

if (clickMeMode) {
text.setText("Button Clicked");
button.setText("Click Again");
clickMeMode = false;

Jelse {
text.setText("I'm a Simple Program");
button.setText("Click Me");
clickMeMode = true;

} }

SOftEng

Es: | am a simple program

public void actionPerformed(ActionEvent event){
// Object source = event.getSource();

if (clickMeMode) {
text.setText("Button Clicked");
button.setText("Click Again");
clickMeMode = false;

}else {
text.setText("I'm a Simple Program");
button.setText("Click Me");
clickMeMode = true;

Py
public void init(){
SwingUl s = new SwingUl();
}
}

Es: | am a simple program

import java.awt.*; import java.awt.event.*;import javax.swing.*;
public class SwingUI extends JFrame implements ActionListener {
JLabel text, clicked; JButton button, clickButton; JPanel panel;
private boolean clickMeMode = true;
public SwingUI() { //Begin Constructor
text = new JLabel("I'm a Simple Program");
button = new JButton("Click Me");
button.addActionListener(this);

panel = new JPanel(); panel.setLayout(new BorderLayout());
panel.setBackground(Color.white); getContentPane().add(panel);
panel.add(BorderLayout.CENTER, text);
panel.add(BorderLayout.SOUTH, button);

}//End Constructor

SOftEng

Es: | am a simple program

= Processing in applet
import java.awt.*; import java.awt.event.*;import javax.swing.*;
public class SwingUI extends JApplet implements ActionListener {
JLabel text, clicked; JButton but

lickButton; JPanel panel;
private boolean clickMeMode = true;
public SwingUI({ //Begin Constructor
text = new JLabel("'m a Simple Applet");
button = new JButton("Click Me");
button.addActionListener(this);

panel = new JPanel(); panel.setLayout(new BorderLayout();
panel.setBackground(Color.white); getContentPane().add(panel);
panel.add(BorderLayout.CENTER, text);
panel.add(BorderLayout.SOUTH, button);

} //End Constructor

SOftEng

Es: | am a simple program

html

<applet code="SwingUl.class" width=300 height=30>
</applet>
</html>

SOftEng

public class AdditionApplet extends JApplet {
double sum;
public void init()
{ String firstNumber, secondNumber; double number1, number2;
// read in numbers from user
firstNumber = JOptionPane.showInputDialog("Enter floating-point value");
secondNumber =JOptionPane.showlnputDialog("Enter floating-point value");
// convert numbers from type String to type double
number1 = Double.parseDouble(firstNumber);
number2 = Double.parseDouble(secondNumber);
sum = numberl + number2; }

public void paint(Graphics g)
{ g.drawRect(15, 10, 270, 20);
g.drawString("The sum is " + sum, 25, 25); }}

SoftEng

Basic methods Basic methods

= Inherited empty (da javax.swingJApplet o e stop()// suspending implementation (called
java.awt.Applet) o override when user abandons the page where applet is
e init() // Initialize confronted (in practice running)
replaces manufacturer) o destroy() // destroys confronted, shall issue the
e start() // Starts implementation application- resources (when browser ends)
generally called after init () or after stop () (User e paint() // Update the part of screen controlled
back to page) by applet
SoOftEng SOftEng
Order called Passage parameters browser-applets
= init() = In the browser: use tag PARAM
= start() = <Applet Code="myApplet.class” width=100
= paint() height=100 >

= <param name=font value="“TimesRoman”>
p

= called on the order from appletviewer " <param name=size value="36">

. let
or browser </applet>
SOftEng SOftEng

Passage parameters browser-applets Demonstration of the methods of an applet

import java.awt.*;
= Inthe applet import java.applet.*;
= method getParameter() // typically in init()
public class TestApplet extends Applet {

= Receives string with name parameter, makes string String s;
with value , or null int inits=0, starts=0, stops=0; // contatori
. " . public void init() { inits++; }
. String s1 = getParameter(“font”); public void start({ starts-+: }
. String s2 = getParameter(“size”); public void stop() { stops++; }

public void paint (Graphics g) {
s = “inits: “+ inits + “starts: ” + starts +
“stops: “+ stops;
g.drawsString(s, 10, 10);

SOftEng SOftEng

An example: the applet hello again The applet hello again: HTML

import java.awt.Graphics;

<HTML>
import java.awt.Font; <HEAD>
import java.awt.Color; <TITLE>Hello to Everyone!</TITLE>
public class HelloAgainApplet extends </HEAD>
java.applet.Applet { <BODY>
Font f — 3 i R " E BOLD. 36): <P> My applet says:
ont f = new Font("TimesRoman", Font.BOLD, 36); <APPLET CODE="HelloAgainApplet.class” WIDTH=250
public void paint(Graphics g) { HEIGHT=25>
g.setFont(f); </APPLET>] =
g.setColor(Color.red); </BODY> st B3 P s e ez @6 L..J
g.drawString("Hello World!", 5, 25); </HTML> a— L
}
| o - =l
SOftEng SOftEng Esecktstaed Sy Coreuns y
Inclusion of applet in a HTML page Inclusion of applet in a HTML page
you are using the tag <APPLET>. Its parameters are very = HSPACE and VSPACE fissano lo spazio (in pixel) tra
similar to those of the tag . la applet ed il testo che la circonda.
= WIDTH e HEIGHT Define the area of the screen (in = CODE gnldf_(IZODIEBASEhindicar]o riSIPettivc'Iimenlte il
pixels) dedicated to applet . nome del file .class che contiene la applet e la

directory in cui si trova il file.

= || testo contenuto tra <APPLET> e </APPLET> e"
mostrato dai browser che non interpretano il tag

If the applet is small, may be "Included" in a line of text.
In this case, Align defines the alignment of applet in

line with the other elements of the line. can take the <APPLET>.
values LEFT, RIGHT, TOP, TEXTTOP, MIDDLE, In HTML 4.0 si utilizza il tag <OBJECT>. | suoi
ABSMIDDLE. BASELINE. BOTTOM e ABSBOTTOM. parametri sono molto simili a quelli del tag

<APPLET>, ad eccezione dell'uso del parametro
CLASSID:"java:pippo.class" al posto del parametro
ODE.

SoOftEng

SOftEng
A complete example A complete example : HTML
import java.awt.Graphics; <HTML> <HEAD>
import java.awt.Font; <TITLE>Hello to Everyone! </TITLE>
import java.awt.Color;
public class MoreHelloApplet extends java.applet.Applet { </HEAD> <BODY>
Font f = new Font("TimesRoman",Font.BOLD,36); <P><APPLET CODEBASE="." CODE="MoreHelloApplet" WIDTH=300
String name;

HEIGHT=200 ALIGN=LEFT>Hello Again!</APPLET>

public void init() { To the left of this paragraph is an applet. It's simple, almost stupid

this.name = getParameter("name");

applet, in which a smaller string is printed, in red color.
if (this.name == null) <BR CLEAR=ALL>
this.name = “Paolo"; X .

this.name = "Hello " + name + "™ <P>In this part of the page we demonstrate how, under certain
! ' conditions... e ! ‘&
public void paint(Graphics g) { </BODY> e

g.setFont(f); </HTML> Hello Laura!

g.setColor(Color.red);

g.drawString(this.name, 5, 50);
}

} SOtEng

SOftEng @

Archives: jar files

To avoid duty is to open a connection for each single
file necessary to execute the applet (. class files, audio
files, images, text files) it is possible to create an
archive or a jar files.

- An archive Java is a set of classes and other files
(compressed) contained in a single file .

- The JDK programme provides a jar that allows you to
create archives .

jar cf Animazione.jar *.class *.gif // Create archive

Using the parameter archive= in the tag <applet> to allow

the browser to transfer the archive. It is however
necessary to specify by the parameter code the name
the executable .

SoftEng

Graphics: the class graphics

Is the class that supports the capacity graphics applets,

which draw lines, forms, characters and present images

on screen, by means of a series of methods .

It isn’t necessary to create an instance of the class
graphics to draw on the screen

=> The method paint () provides an object graphics
acting on which draws on the screen.

SoOftEng

Draw Lines and squares

To draw a line
public void paint(Graphics g) {
g.drawLine(25, 25, 75, 75);

To IIDrawHa rectangle, specifying the coordinated point in the top left, width and
ength:

public void paint(Graphics g) {
g.drawRect(20, 20, 60, 60); // x0, y0, width, height
g.fillRect(120, 20, 60, 60);

}

To IIJraw; rectangle, specifying the coordinated point in the top left, width and
ength:

public void paint(Graphics g) {
g.drawRoundRect(20, 20, 60, 60, 10, 10);
g.fillRoundRect(120, 20, 60, 60, 20, 20);

}

To Draw a rectangle “3d" (You get a 3d effect style buttons):

public void paint(Graphics g) {
g.draw3DRect(20, 20, 60, 60, true);
g.fill3DRect(120, 20, 60, 60, false); }

SOtEng

Graphics

SoftEng

Graphics: the class graphics

= The system of two-dimensional coordinates has
e origin, tgat is point (0,0) in the top left
e The positive values of coordinated X is moving
on the right
e The positive values of coordinated y is moving
in the lower
= The points point, used as a reference to draw any
object, express the coordinates in pixels on the
screen and are integer values .

SoftEng

Draw polygon

To draw a polygon and necessary to define a set of coordinates x and y, as array or
as instances of the class polygon.

public void paint(Graphics g) {
int x[] = {39, 94, 97, 142, 53, 58, 26};
inty[] = {33, 74, 36, 70, 108, 80, 106};
int points = x.length;
g.drawPolygon(x,y,points);

}

public void paint(Graphics g) {
int x[] = {39, 94, 97, 142, 53, 58, 26};
inty[] = {33, 74, 36, 70, 108, 80, 106};
int points = x.length;
Polygon poly = new Polygon(x,y,points);
g.fillPolygon(poly);

The polygon is closed automatically from Java (1.2).
- drawPolyline() allows to have open polygons.

It is possible to add points to a subject Polygon
poly.addPoint(20,35);

SOftEng

Draw circles, ellipses and strings A simple example

To draw rims or ellipses using the oval . import java.awt.; . SiEE
public void paint(Graphics g) { public class Lamp extends java.applet.Applet { B st v e e ::li...., s
g.drawOval(20, 20, 60, 60); // X0, yO, width, height public void init({ e 1
g.filloval(120, 20, 100, 60); colora I'ovale nel rettangolo s resize(300,300); |

}
= the strings are defined as pieces of ellipses with the method drawArc()

. ¥ou define initially the size of the Circle (ellipse), which otterra' the arc.
inally, it must provide the points at the beginning and end of the ARC
through the corner at the beginning and the angle subtended by arc.

corners defined positive counterclockwise (90 vertical axis).
public void paint(Graphics g) {

}

public void paint(Graphics g) {
g.fillRect(0,250,290,290); // the base
g.drawlLine(125,250,125,160);//the stem
g.drawLine(175,250,175,160);
g.drawArc(85,157,130,50,-65,312);
g.drawArc(85,87,130,50,62,58);
g.drawArc(20, 20, 60, 60, 90, 180); g.drawlLine(85,177,119,89);
g.fillArc(120, 20, 60, 60, 90, 180); g.drawlLine(215,177,181,89);

} bi id paint(Graphi Y g.fillArc(78,120,40,40,63,-174); / /draw

public void paint(Graphics g g.fillOval(120,96,40,40);
g.?:’liwA(r]c(()] %,02?,5105?5,052,525,];1);’:0)2 g.fillArc(173,100,40,40,110,180);
g.fillArc(10, , , y y - H }

- y

} }
SoOftEng SOftEng

Copy and delete pieces of screen Copy and delete pieces of screen

= to copy a piece of screen using the method copyarea () In this way stains with the color of the region
with the parameters x and y the angle on the top left of specified background as a parameter in the call to
the rectangle to copy, width and height of the rectangle, the method clearRect().
relative distance in X and Y of the area on which copy .

Example Example: delete the whole area dedicated to applet .
g.copyArea (0, 0, 100, 100, 100, 0);

= To cancel a piece of screen using the method that

clearrect has the same parameters of drawRect.

SoOftEng

Print text and font management

To write on the screen you must first create an instance
of the class font .

The objects fonts are identified by :

= A name: a string that represents the family of font:
timesroman, courier, Helvetica. IN THE VERSION 1.2
USING THE NAMES. Serif, monospaced, sanserif .

= Style: a constant whole (Font.PLAIN, Font.BOLD,
Font.ITALIC)
=> The constants be added together : Font.BOLD +
Font.ITALIC

SOftEng

g.clearRect (0, 0, width, height);

SOftEng

Print text and font management

The dimension in points: a number

public void paint(Graphics g) {
Font f = new Font("TimesRoman", Font.BOLD, 72):
g.setFont(f);
g.drawString("This is a huge font .", 10, 100);

There is also the method drawChars () of the class
graphics, which requires as parameters an array of
characters, a whole that is the first character to play
on the screen, a whole for the last character to
represent, and coordinates X and Y.

SOftEng

Font management

The most important methods to obtain information about
current font are:

= getFont(): Return the current font
= getName(): ritorna una stringa con il nome del font
= getSize(): Return a string with the name of the font
= getStyle(): Return the style of font

= jsPlain()
= jsBold()
= isltalic()

For more information more specific on the individual font
exploits the class FontMetrics .

SoOftEng

Font management

Example of font management

= The following applet centra horizontally and vertically written
compared to the area dedicated to applet .

import java.awt.Font;
import java.awt.Graphics;
import java.awt.FontMetrics;
public class Centered extends java.applet.Applet {
public void paint(Graphics g) {
Font f = new Font("TimesRoman", Font.PLAIN, 36);
FontMetrics fm = getFontMetrics(f);
g.setFont(f);
String s = “A bee on a bee makes a baby bee.";
int xstart = (this.getSize().width - fm.stringWidth(s)) / 2;
int ystart = (this.getSize().height + fm.getHeight()) / 2;
g.drawsString(s, xstart, ystart);
bl

SoOftEng

Principal method are:

stringWidth(): date a string, it will return the width in
pixels

charWidth(): As a character it will return the amplitude

etAscent(): Return the distance between the base and
the far superior of the font
getDescent(): Return the distance between the base
and the lower end of the font
getLeading(): Return the space between the lower end
Io‘f a character and the far higher than what in the next
ine
getHeight(): Return the total height of the font

SOftEng

Color management

Color management

Color RGB code Color RGB code
Color.white 255, 255, 255 Color.blue 0,0, 255
Color.black 0,0,0 Color.yellow 255, 255,0
Color.lightGray 192,192,192 Color.magenta 255, 0, 255
Color.gray 128,128,128 Color.cyan 0, 255, 255
Color.darkGray 64, 64, 64 Color.pink 255,175,175
Color.red 255,0,0 Color.orange 255,200, 0
Color.green 0, 255,0

SoftEng

= The methods for managing the colors are contained
in the class color .

= The colors are encoded on 24 bit; each color and
consists of a combination of red, green and blue .

= Each component is represented with a whole number
between 0 and 255 (or with a float line between 0
and 1).

are defined class variables for the main colors .

SOftEng

Color management

The methods most important for the management of
the colours are :

= setColor(): set current color

= setBackground(): Sets the current Color the wallpaper

= setForeground(): Change the color of the objects of
the user interface (for example, buttons) and acts on
components of the user interface, not on an instance
of the class graphics

All methods there is the corresponding method Get... ()
that allows to read the current color.

SOftEng

An example of color management

import java.awt.Graphics;
import java.awt.Color;
public class ColorBoxes extends java.applet.Applet {
public void paint(Graphics g) {
int rval, gval, bval;
for (int j = 30; j < (this.getSize().height -25); j += 30)
for (inti = 5;i < (this.getSize().width -25); i+= 30) {
rval = (int) Math.floor(Math.random() * 256);
gval = (int) Math.floor(Math.random() * 256);
bval = (int) Math.floor(Math.random() * 256);
g.setColor(new Color(rval,gval,bval));
g.fillRect(i,j,25,25);
g.setColor(Color.black);
g.drawRect(i-1, j-1, 27, 27);
}
}

}S&NIEHQ

Animation

Itis possible to order explicitgl toJava

implementation of the method of updating of the

screen whenever necessary .

= To change what you see on the screen, and

sufficient to achieve an image of what is to draw,

and ask Java refresh the screen.

= all the amendments necessary to create the images

are made in a specific method. The method paint ()

is only to copy on the screen the current image.

SoOftEng

Animation

To run the entertainment of an image must be taken two
steps:

1. Definition of the image to animate

2. Recovery of the upgrade of the screen so as to create
the illusion of movement

= The method paint () is automatically called from Java all
the times that it is necessary to update (cool) the area
of video dedicated to applet: the first time an applet is
activated, every time you move the browser window,

each time another window overlaps that of the browser.
).

SOftEng

Animation

Animation: methods start() and stop()

To run applets containing animated must use the
methods start() e stop().

= The method start() initiates the execution of applet .

= The method stop() is executed when the applet
suspending its implementation (change of HTML page
by the browser) and allows you to release the
resources used for the performance of applet.
=> It is necessary to run the redefinition of start() and
stop()

SOftEng

= At the end of the operations of the preparation of the
image, is called the method repaint (), which in turn
eseguira’ the call to paint ().
=> By running in a cyclical and a certain speed the
previous steps, it is a simple animation.

SOftEng

Example: digital watch

import java.awt.Graphics;
import java.awt.Font;
import java.util.Date;
public class DigitalClock extends java.applet.Applet {
Font theFont = new Font("TimesRoman",Font.BOLD,24);
Date theDate;
public void start() {
while (true) {
theDate = new Date();
repaint();
try { Thread.sleep(1000); }
catch (InterruptedException e) { }
}
}
public void paint(Graphics g){
g.setFont(theFont);
g.drawString(theDate.toString(),10,50);

 SorEne

Multithreading

The previous example does not work !

= The endless cycle this in the method start ()
monopolizes the resources of the system, impendendo
ALSO TO THE METHOD paint () to make the refreshment
of the screen .

It is not possible to stop the applet why not you can call
the method stop().
=> The applet should be restated using a thread.
Each time that it is necessary to perform a sequence of
operations of a certain length it should create a
separate thread run this operation.
It is always a good idea to use the programming with
the thread when you write an applet.

SoOftEng

The flicker in animation

The implementation of the method repaint() initiates
(indirectly) the call to the method paint():

1. repaint() calls the methodupdate()

2. The method update() Delete the part of screen
dedicated to applet (painting everything with the
background color or background) and calls the
method paint()
. The method paint() refreshes the screen designing
the new image

=> The phase which draws the background because
the flicker .

w

SoOftEng

Update() method

The standard version of the method update() is:
public void update(Graphics g){
g.setColor(getBackground());
g.fillRect(0, 0, size().width, size().height);
g.setColor(getForeground());
paint(g);
}

When it redefines the method update () The new version
must perform all the instructions that are necessary
for the functioning of applet .

SOftEng

Currect digital watch

import java.awt.Graphics;

import java.awt.Font;

import java.util.Date;

public class DigitalClock extends
Jjava.applet.Applet
implements Runnable {
E?t?[theFont =new Font(“Arial",Font.BOLD,

Date theDate;
Thread runner;
public void start() {
if (runner == null) {
runner = new Thread(this);
runner.start(); // Innesca invocazione
// method run() of the applet
}
}
public void stop() {
if (runner 1= null) {
runner.stop();
runner = null;

}

SOftEng

public void run() {
while (true) {
Thread thisThread = Thread.currentThread();
while (runner == thisThread) {
repaint();
try { Thread.sleep(1000); }
catch (InterruptedException e) { }
}
}
}
public void paint(Graphics g){
theDate = new Date(); // aggiorno data ogni
// volta che devo ridipingere
schermo

g.setFont(theFont);
g.drawString(theDate.toString(),10,50);
}
}

// Class Date obsolete; change with Calendar

The flicker in animation

To avoid the flicker can :

1. redefine (overriding) the method update () so as
not redesign the background

2. redefine (overriding) the method update () In order
to draw only the part that is change

3. redefine method is the update () method is the
paint () and use the technique of double buffering

SOftEng

First solution: not redesign the background

import java.awt.Graphics;
import java.awt.Color;
import java.awt.Font;
public class ColorSwirl extends java.applet.Applet
implements Runnable {
Font f = new Font(*Arial’ Font.BOLD, 48);
Color colors[] = new Color{50];
Thread runThread;
public void start({
if (runThread == null) {
runThread = new Thread(this);
runThread.start(;
}
}
public void stop({
if (runThread 1= nul) {
runThread.stop0;
runThread = null;

SOftEng

public void run({
// should be better in method init !!!
floatc = 0;
for (int i = 0; i < colors.length; i++) {
colors[il= Color.getHSBColor(c,
(float)1.0,(float)1.0);
c+=.02;
}
inti=0; //cyclethrough the colors
while (true) {
setForeground(colors[il);
repaint(;
it
try { Thread.currentThread().sleep(50); }
catch (InterruptedExceptione) { }
if (i == (colors.length) i = 0;
}
}
public void paint(Graphics g) {
g.setFont(f);
g.drawString("All the Swirly Colors", 15,50);

}

public void update(Graphics g}{
paint(g);

1)

First solution: not redesign the background

import java.awt.Graphics;
import java.awt.Color;
public class Checkers extends
Jjava.applet.Applet
implements Runnable {
Thread runner;
int xpos;
public void start() {
if (runner == null); {
runner = new Thread(this);
runner.start();
}
} }
public void stop() { }
if (runner != null) {
runner.stop();
runner = null;

}

SoOftEng }

public void run() {

setBackground(Color.blue);
while (true) {
for (xpos = 5; xpos <= 105; xpos+=4) {
repaint();
try { Thread.sleep(100); }
catch (InterruptedException e){}
}
for (xpos = 105; xpos > 5; xpos -=4) {
repaint();
try { Thread.sleep(100); }
catch (InterruptedException e){}
}

public void paint(Graphics g) {

g.setColor(Color.black); // Draw background
g.fillRect(0,0,100,100);
g.setColor(Color.white);
g.fillRect(101,0,100,100);
g.setColor(Color.red); // Draw checker
g.filloval(xpos,5,90,90);

}

Other solution: redesign only the parts

necessary

import java.awt.Graphics;
import java.awt.Color;
public class Checkers2 extends java.applet.Applet
implements Runnable {
Thread runner;
int xpos,ux1,ux2;
public void run({
setBackground(Color.blue);
while (true) {
for (xpos = 5; xpos <= 105; xpos+=4) {
ux2 = xpos + 90;
repaint();
try { Thread.sleep(100); }
catch (InterruptedException e) { }
if (ux1 == 0) ux1 = xpos; // Importante
per assicurare esecuzione del metodo paint
}

for (xpos = 105; xpos > 5; xpos —=4) {
ux1 = xpos;
repaint();
try { Thread.sleep(100); }
catch (InterruptedException e) { }
if (ux2 == 0) ux2 = xpos + 90;

So'rd

public void update(Graphics g) {
g.clipRect(ux1, 5, ux2 - uxl, 95);
paint(g);

public void paint(Graphics g) {
g.setColor(Color.black);
g.fillRect(0,0,100,100);
g.setColor(Color.white);
g.fillRect(100,0,100,100);
g.setColor(Color.red);
g.fillOval(xpos, 5,90,90);
ux1 = ux2 = 0; // calcolo area
}
public void start() {
if (runner == null); {
runner = new Threadi(this);
runner.start();

}
public void stop() {
if (runner = null) {
runner.stop();
runner = null; } } }

Use of images

Image img = getlmage(getDocumentBase(),

Checkers applet

public void run() {

import java.awt.Graphics;
// should be better in method init !!

import java.awt.Color;

N floatc = 0;

import java.awt.Font; for (int i = 0; i < colors.length; i++) {

public class Checkers extends java.applet.Applet colorsjil~ Color.getHSBColor(c,
implements Runnable { (floan.0,(floan)1.0);

" " . c+=.02;
Font f = new Font("Arial",Font.BOLD,48); inti=0; //cycle through the colors
Color colors[] = new Color{50]; while (true) {

Thread runThread; setForeground(colors[il);
public void start() { repaint();

if (runThread == null) { i+
runThread = new Thread(this): try { Thread.currentThread().sleep(50); }
runThread.start(' catch (InterruptedException e){ }

if (i == (colors.length) i = 0;
! 1y
} public void paint(Graphics g) {
public void stop() { g.setFont(f);

if (runThread != null) { g.drawString("All the Swirly Colors", 15,50);

}
runThread.stop(); public void update(Graphics g){
runThread = null; paint(g);
}

P SOftEng

Use of images

The class image in java.awt provides the methods for
managing images .

Java supports images GIF format and JPEG .

The most important methods to load images are :
getimage() load the image

- getdocumentbase() return the URL that is the directory
in which the html file that contains the applet
getcodebase() return, in the form of string, the URL of
the applet

SoftEng

Example: LadyBug applet

import java.awt.Graphics; public void paint(Graphics g) {

"image.gif");
Image img = getimage(getCodeBase(),
"image.gif");
Image img = getimage(getCodeBase(),
"images/image.gif"));
=> If the File not Found, getimage will return null.
= To draw a picture you use the method drawimage
() In paint ().

SOMtEng

import java.awt.Image;
public class LadyBug extends
Jjava.applet.Applet {
Image bugimg;
public void init() {

bugimg = getimage(getCodeBase(),

“gioconda.gif");
// getlmage() Torna oggetto Image.
// Non istanzio bugimg

SOftEng

int iwidth = bugimg.getWidth(this);
int iheight = bugimg.getHeight(this);
int xpos = 10; //25%
g.drawlmage(bugimg, xpos, 10,
iwidth /4, iheight /4, this); // 50 %
xpos += (iwidth / 4) + 10;
g.drawlmage(bugimg, xpos, 10,
iwidth/2, iheight /2, this); // 100%
xpos += (iwidth /2) + 10;
g.drawlmage (bugimg,xpos, 10, this);
/1 150% x, 25% y
g.drawlmage(bugimg, 10, iheight + 30,
(int) (iwidth * 1.5), iheight /4, this);

Example: LadyBug applet

<HTML>

<HEAD>
<TITLE>Clock</TITLE>

</HEAD><BODY>

<P><APPLET CODEBASE="." CODE="LadyBug"

WIDTH=400 HEIGHT=400 ALIGN=LEFT>
</APPLET>

Explorer | =lalx)
</BODY> Be Gt e Fnnm Tk o [
</HTML> r .)J 3| Qsewch rartes »

Biewntgron] ook ®
L s =]
SOftEng) opiet rd S compiss 7

Example of entertainment: the applet
Neko

public void stop() {

Example of entertainment: the applet
Neko (follow)

void nekorun(int start, int end) {
for (int i = start; i < end; i+=10) {

void nekosleep(int numtimes) {
for (int i = numtimes; i > 0; i--) {

this.xpos = i; currentimg = nekopics(6];
/[swap images repaint();
if (currentimg == nekopics[0]) pause(250);

currentimg = nekopics[1];

) n currentimg = nekopics(7];
else if (currentimg

= nekopics[1]) repaint();
currentimg = nekopics[0]; i

else currentimg = nekopics[Ol; | Pauseson
repaint();)
} pause(150); void pause(int time) {
} try { Thread.sleep(time); }
void nekoscratch(int numtimes) { catch (InterruptedException e) { }
for (int i = numtimes; i > 0; i--) { }
currentimg = nekopics[4]; public void paint(Graphics g){
repaint(); g.drawimage(currentimg,xpos, ypos,this);
pause(150);
currentimg = nekopics[S]; }
repaint();
pause(150);
}
' SOfiEng

import java.awt.*; public void run() {

public class Neko extends java.applet.Applet for (int i=0; i < nekopics.length; i++) {
implements Runnable { nekopics[i] = getimage(getCodeBase(),
Image nekopics[] = new Image[9]; “images/" + nekosrc[i]);
String nekosrc[]={"right1.gif", "right2.gif", }
»»»»»»»») setBackground(Color.white);
“"awake.gif" }; nekorun(0, this.size(.width / 2); // run

Image currentimg;

Thrend currentimg = nekopics[2]; // stop and pause
Thread runner; repaint(;
int xpos; pause(1000);
int ypos = 50; H
public void start0 { currentimg = nekopics[3]; // yawn
if (runner == null) { repaint0; .
runner = new Thread(this); pause(1000) :
runner.start(); nekoscratch(4); // scratch four times
} ' nekosleep(5); // sleep for 5 seconds

ffcurremimg = nekopics[8]; // wake up and run
of

if (runner 1= null) { repaint(); v
runner.stop(); pause(500);
runner = null; nekorun(xpos, this.size().width +10);
}
SoOftEng

Inclusion of sounds in applet

Inclusion of sounds in applet

We must stop explicitly a sound of background (or a
sound that use the method loop ()) in the method
stop (), otherwise the sound continues even when the
applet finished run.

public void stop() {
if (runner !'= null) {
if (bgsound !'=null)
bgsound.stop();
runner.stop();
runner = null;

SOtEng

= Java 1.2 Supports sound formats AIFF, WAV, MIDIO,
MIDI1 e RM

= Itis always p055|ble to include sounds through pointers
to the external in HTML page.

= To generate a sound
through class method applet :

play(getCodeBase(), "audio/meow.au"); // plays the
sound once

Through methods of class AudioClip:

AudioClip cli getAudioClip(getCodeBase(),
"audio/loop.au” 5)

clip.play(); // plays the sound once
clip.stop(); // stops the sound
clip.loop(); // plays the sound repeatedly }

SoftEng

Reduce the flicker: Double buffering

The method more complex to reduce the flicker and “the
double buffering .

The method is to create a second area off the screen to
design the new image to display; at the end of this
process, the surface will be displayed in a blow only on
the screen.
=> It is not likely to view parts of the image
intermediate thus disturbing the effect of
entertainment since and is a technical costly in terms of
memory and efficiency, and “well use it only if none of
the other technical works.

SOftEng

Checkers applet modified with double
buffering

1. Add the variables of application for the external image and its contents
chart
Image offscreenimg;
Graphics offscreenimg;
2. Add a method init () to initialize the external image
public void init() {
offscreenimg = c ize().width, this.size().height)
offscreenG = offscreenimg.getGraphics();

}
3. Modify the method paint to design the external image

public void paint(Graphics g) {
/| Draw the background
offscreenG.setColor(Color.black);
offscreenG.fillRect(0, 0, 100, 100);
offscreenG.setColor(Color.white);
offscreenG. fillRect(100, 0, 100, 100);
// Draw the pawn
offscreenG.getColor(Color.red);
offscreenG.fillOval(xpos, 5, 90, 90);
g.drawimage(offscreenimg, 0, 0, this); }

SoOftEng

Observations on applet

Observations on applet

to exchange information between applet belonging to the same page HTML :
= Assigning a name to the applet by the parameter NAME= tag APPLET

= The method getapplet () allows the access to the methods and to the
variables of instances of other applet .

<APPLET CODE="MyApplet1" WIDTH=100 HEIGHT=150 NAME="Trasmitter">
</APPLET>

<APPLET CODE= “MyApplet2" WIDTH=100 HEIGHT=150 NAME="Receiver">
</APPLET>
Applet receiver = getAppletContext().getApplet("Ricevitore");
receiver.update(text, value); // Initiation of the update applets receiver

Per caricare un documento HTML e farlo visualizzare dal browser:
String url = "http://www.polito.it/~falcarin";
theURL = new URL(url);

getAppletContext().showDocument(theURL); // open a document in
the same windows

getAppletContext().showDocument(theURL,"_blank"); // open a document
. // in a new windows
SoftEng

Management of interactivity: Events

The events are the ways of communication between the user (system)
and the program running .
Type of events:
= input from the user :
- pressure of the buttons of the mouse
- Movement of the mouse
- pressure of a key of the keyboard
= Events of user interface:
= - click on button
- Movement of a scroll bar
- Viewing menu
= Events of the windows: opening, closing and exit from a window

The management of the events within an application allows you to
changethe behaviour of applet (or application) in the information
supplied by the user.

SOtEng

= The method showstatus () allows you to view
information on applet of method getappletcontext(),
which will return an object of type appletcontext and
enables the applet to access some first of the browser
that contains

getAppletContext().showStatus("Cambio il colore");
Per fornire informazioni associate alla applet
public String getAppletinfo() {

return “Empty applet, Copyright 2002 Paolo
Falcarin®;

}

SoftEng

Swing Classes and Events

Low-level events and semantic

= A low-level eventis a simple input or an event in
the system chart .

= Events semantic way the semantics of a component
of user-interface .

Low-level

Jjava.awt.event
ComponentEvent

FocusEvent

InputEvent java.awt.event
KeyEvent ActionEvent
MouseEvent AdjustmentEvent

ContainerEvent
WindowEvent

ItemEvent
TextEvent

SOftEng

Management of the events

= The model of the events introduces the concept of
listener of events (listener), which is responsible for the
management of specific events .

The events are separated in different classes, with
listeners separate dealing in each Class.

- There is a package dedicated to the events
(java.awt.event)

- The subject on which it created the event (an applet or
a part)

- the listener in events (which may be different for
categories of various events) that performs actions in
response to specific events covered

The two elements are connected through the registration
of the listener: are transmitted the listener only events
that interested him

SoftEng

The preparation of the events and "in two separate parts:

Identification of the events

The different listeners are defined by interfaces on the
package java.awt.event

Interface Event Method

MouselListener button depressed void mousePressed(MouseEvent e)
Button issued void mouseReleased(MouseEvent e)
Entrance mouse cursor void mouseEntered(MouseEvent e)
Exit mouse cursor void mouseExited(MouseEvent e)
mouse click void mouseClicked(MouseEvent e)
click = press + release in same position

MouseMotionListener Movement of the mouse void mouseMoved(MouseMotionEvent e)

Drag of the mouse void mouseDragged(MouseMotionEvent e)
KeyListener key pressed void keyPressed(KeyEvent e)
Key issued void keyReleased(KeyEvent e)
Key typed void keyTyped(KeyEvent e)

Key typed = key pressed + key issued

SoOftEng

Management of the events in applet

Modify the applet executing the following steps:

= Import java.awt.event

= Specify as interfaces for the management of events will be
implemented

public class MyApplet extends java.applet.Applet implements
MouselListener {

= you define all methods of each interface (for the methods which are
not interested, you must specify the method with the body empty)
public void mouseClicked(MouseEvent e) { }
public void mousePressed(MouseEvent e) {
// Instructions for the management of the pressure of the mouse

public void mouseReleased(MouseEvent e)
public void mouseEntered(MouseEvent e) {
public void mouseExited(MouseEvent e) { }

SOftEng

{3
}

Managements of events in Java

To manage the events and "necessary to run the
following operations:

1. decide which events must be managed by applet and

identify appropriate listeners

. Define the code for the preparation of the events of

the listeners

a manager of events and "a class that implements

one or more listeners interfaces

Two possibilities :

(a) creazione di una classe di gestione degli eventi

separata

(b) Introduction of the management of the events in

applet

. Book The listener with the receiver of the events

(example: the applet)

SOftEng

N

w

Creation of a separate class of listening

= It defines the new class as subclass of an adapter of events
— CLASSES DEFINED IN java.awt.event; there is one for every
interface a listener

= for mouse and keyboard are available in three adapters :

MouseAdapter implement MouseListener
MouseMotionAdapter implement MouseMotionListener
KeyAdapter implement KeyListener

= Examole:

import java.awt.event.*;
class MyMouselListenerClass extends MouseAdapter {
public void mousePressed(MouseEvent e) {
// Instructions for the management of the pressure the mouse
button }
public void mouseReleased(MouseEvent e) {
// Instructions for the management of the issue of mouse button

tdoriEng

Registration of the listener

= using special methods defined in class component

= For each type of listener there is the corresponding
method (examples: addmouselistener (),
addmousemotionlistener (), addkeylistener ()
- If was defined a class of separate management of
the Events:

miaclassediascoltomouse ml = New ();

addmouselistener (ml);
- If was introduced the management of the events in
addmouselistener applet (This);

SOftEng

Management of the mouse

Management of the keyboard

- Events of the mouse belong to classes mouseevent and
mousemotionevent, which are sub-classes of inputevent

« The interfaces of the listeners are defined in mouselistener and
mousemotionlistener

- The methods used are :

mousePressed() mouseReleased()
mouseDragged() mouseMoved()
mouseEntered() mouseExited()

- The method mouseclicked () it is generated when occur a pressure and
subsequent release the mouse button in the same position

- To know the position of the mouse is using the methods include () and
gety () defined on the subject event

-To manage Triple and double clicks, using the method getclickcount ()

SoOftEng

Management of the keyboard

Events of the keyboard belong to the class keyevent,
subclass of inputevent
The interface of the listener it is defined in keylistener

= The methods are :

keyPressed(KeyEvent e)
keyReleased(KeyEvent e)

Note: the encoding of the keys depends on the platform

The method keytyped (keyevent) corresponds to typing of a

key (pressure followed by issue)

- Only this method of coding platform-independent of the

various characters

The keys modifiers have occurred with the methods

isshiftdown (), iscontroldown (), isaltdown () and

ibsm?tadown () defined in class keyevent, returning an
oolean

SOftEng

Management of the Windows

= To manage special keys (example: function keys, pgup) using the virtual keys,
class variables DEFINED IN CLASS keyevent
=> Allow to make independent Java code platform (keyboards different can
generate different numerical values for the same key)

= Itis possible testing them using the method getkeycode () As defined in class
keyevent:
if (e.getKeyCode() == KeyEvent.VK_PAGE_DOWN) {

/[istruzioni gestione tasto PgDn }
= Some of deniti special keys :

Variable class Key Variable key Key
VK_HOME Home VK_UP Freccia in su
VK_END End VK_DOWN Freccia in giu’
VK_PAGE UP Page Up VK_LEFT Freccia a sinistra
VK_PAGE_DOWN Page Down VK_RIGHT Freccia a destra
VK_F1 - VK_F12 Tasti funzione VK_INSERT Insert
VK_PAUSE Tasto pausa VK_ESCAPE Escape
SOftEng

Management of basic components of

the interface towards the User

The procedure for the inclusion of a componentin a
container is independent of the component considered
and consists in :

. Creation of the component elementary

. Inclusion in the container which contains the
public void init() {

Button b = new Button("OK");
add(b); }
= The positioning of the component in the container
depends on the definition of the structure (layout) of the
container .

= The layout of default is flowlayout with centre alignment.
The objects are automatically placed one after another,
gom IeEto right, line by line .
SOTtEng

N —

The system to Windows of AWT is based on primary nesting

of components, from external window until P/ou reach the
components (normally more simple) Internal .

= It defines a hierarchy of components which determines the

provision of the elements on the screen, the order in which
are displayed. The components are more important :
Container: are generic components that contain within
them other components. applets are a subclass of panel
(containers represented on the screen) that are themselves
a subclass of containers .

Canvas: Are areas dedicated to the representation of
images .

Components of User Interface: Button, list, popup menu,
checkbox, text eld, label .

elements for the construction of the windows: frame,
menubar, dialog window .

SOftEng

Panel

The positioning of the objects based on absolute
coordinates in pixels can give results very different on
different screens.

=> The positioning of the objects and is based on
- Layout of the panel that includes the items
- order in which these objects are created in the panel
The five basic layout are: flowlayout, gridlayout,
borderlayout, CardLayout, gridbaglayout .
during initialization of the panel, you select the layout
wanted by calling the method setlayout ():
public void init() {

this.setLayout(new FlowLayout()); }

The layout null indicates that the panel must be regarded as
a graphical window free (as graphics) editable passing the

coordin&tes
SOfitEng

Property of a component

= gridx, gridy. coordinates of the cell (if the
component occupies more cells, specify the cell
corresponding to the corner in the top left)
gridwidth, gridheight: number of occupied cells from
component (columns for gridwidth, LINES FOR
gridheight)

weightx, weighty: villages of total space (in X and Y)
occupied by cell

- applies zero if the proportions are set elsewhere;
indicates to occupy all space is available for the cell
Fill: determines the direction in which extends the
component. None (default): see the component the
minimum size

SoOftEng

Property of a component

An example of management of actions

import java.awt.*; import java.awt.event.*;
public class ButtonActionsTest extends java.applet.Applet {
Button redButton, blueButton, greenButton, whiteButton;
public void init() {
ButtonHandler bh;
setBackground(Color.white);
setLayout(new FlowLayout(FlowLayout.CENTER,10 ,10));
redButton = new Button("Red");
bh = new ButtonHandler(this,Color.red);
redButton.addActionListener(bh);
add(redButton);
blueButton = new Button("Blue");
bh = new ButtonHandler(this,Color.blue);
blueButton.addActionListener(bh);
add(blueButton);
greenButton = new Button("Green");
bh = new ButtonHandler(this,Color.green);

SoOftEng

Both: the component extends up to fill the cell in
both directions

Horizontal: the component widens in horizontal
Vertical: the component widens in vertical

Anchor: Position of the component in the cell.
Values : CENTER (default), NORTH, NORTHEAST,
EAST, SOUTHEAST, SOUTH, SOUTHWEST, WEST,
NORTHWEST.

ipadx, ipady: Space around to the component (in x
ey)

SOftEng

An example of management of actions

Nesting of panels

To use graphical features different (different layout, or
different font,. . .) in different areas of the same
applet, you create different panel inside the applet.

To create more panel in an applet (itself a subclass of
class panel), and "sufficient to add new panel to the
panel container, in the same way in which addition to
the other items.
setLayout(new GridLayout(1,2,10,10);

Panel panell = new Panel();

Panel panel2 = new Panel();
add(panell);

add(panel2);

panell.setLayout(new FlowLayout());
panell.add(new Button("Up");
panell.add(new Button("Down");

SOftEng

greenButton.addActionListener(bh);
add(greenButton);
whiteButton = new Button("White");
bh = new ButtonHandler(this,Color.white);
whiteButton.addActionListener(bh);
add(whiteButton);
}
}
class ButtonHandler implements ActionListener {
Color theColor;
ButtonActionsTest theApplet;
ButtonHandler(ButtonActionsTest a, Color ¢) {
theApplet = a;
theColor = c;

public void actionPerformed(ActionEvent e) {
theApplet.setBackground(theColor);

}S-;z_)f tEng

Text Area

The TextArea management allows a more complete
text fields compared to the component textfield .

Allows you to specify the text on more lines, managing
if necessary scrolling text automatically .

The methods builders are:
= TextArea(); Area of size nothing

= TextArea(String); Area of size nothing initialized with
the specified text

SOftEng

Text Area

TextArea(String, int, int); Region with size and text
specified initialization

TextArea(String,int,int,int) : Region with size and
text initialization specified. The last parameter
describes the state of scrollbar:
TextArea.SCROLLBARS BOTH (default): View
scrollbar horizontal and vertical
TextArea.SCROLLBARS HORIZONTAL ONLY: Show
only horizontal scrollbar

= TextArea.SCROLLBARS VERTICAL ONLY: Show only
scrollbar vertical

TextArea.SCROLLBARS NONE does not show
scrollbar

SoOftEng

Text Area

Text Area

To manage the events of the selection and
deselezione must provide the implementation of
methods focusgained () and focuslost ()

to manage events to amend the text it implements
the interface textlistener, which contains the
method textvaluechanged ().

SoOftEng

In addition to the many methods applicable to text
field, are available:

= getColumns(), getRows(): Returning the number of
columns (characters) and lines of text region

insert(String, int): Insert the text specified in the
position date

replaceRange(String, int start, int end) : replaces the
text between the positions specified with the new
string

The text area generate the same events of Text Field:
= Events of the selection of selection and deselection
= Event of amendment of the next

SOftEng

Scrolling lists

Scrolling list

= After you have created a subject list, you can add
elements with the method Add ().

= // 4 lines visible and not abilito multiple selection

List Ist = new List(4, false);
Ist.add("Mercury"); Ist.add("Venus");
Ist.add("Earth"); Ist.add("JavaSoft");
Ist.add("Mars");

cnt.add(Ist);

The methods applicable are similar to those of menu .

SOftEng

consist of a list of elements, selectable or one at a time
(exclusive) or with multiple-choice (nonexclusive).
=> If the number of elements is greater than the
number of elements Viewable, a scroll bar and added
automatically

The methods builders are :

= List (); create a list that allows the selection of a

single element for time

List (int): Creates a list with the specified number of

visible elements

List (int, boolean): Creates a list with the specified

number of elements and certification (if the second

parameter that is true) of multiple selection .

SOftEng

Scrolling list

The lists scrolling generate the following events:
= Double-click on an element (event of action)
= Selection and deselezione of an element

To manage the double-click it implements the method
actionperformed () In the interface actionlistener for
selection.../deselezione it implements the method
itemstatechanged (), in the interface itemlistener.

Class itemevent contains the methods getitem (), which
gives the element that generated the event, and
getstatechange () that describes if it has been
selected or deselected.

SOftEng

Scrollbar

It is possible to create scroll bars autonomous, not

automatically managed as in lists a scrolling, or in text
region .

The methods builders are

scrollbar (); creates a scroll bar vertical, with a field of
minimum and maximum values respectively 0 and 0
scrollbar (int), creates scrollbar guidance with specicato
(scrollbar.horizontal or scrollbar.vertical)

scrollbar (int, INT, INT, INT, int), and creates scrollbar
with guidance, initial position, amplitude of the cursor,
minimum and maximum value of scroll bar

SoOftEng

Scrollbar

Scrollbar: example

import java.awt.*;
import java.awt.event.*;
public class ScrollbarTest extends java.applet.Applet implements

AdjustmentListener {

Label I;

public void init() {
setLayout(new GridLayout(1,2));
| = new Label("1",Label.CENTER);
add(l);
Scrollbar sb = new Scrollbar(Scrollbar.HORIZONTAL,0,0,1,100);
sb.addAdjustmentListener(this);
add(sb);

}

public void adjustmentValueChanged(AdjustmentEvent e) {
int v = ((Scrollbar)e.getSource()).getValue();
|.setText(String.valueOf(v));

The methods are applicable :

= getMaximum(), getMinimum(), getOrientation():

Return value respectively the minimum or

maximum and the guidance of the bar

getValue(), setValue(): returns or set the current

value of the bar

It implements the method adjustmentvaluechanged
(), in the interface adjustmentlistener .

The class adjustmentevent includes the method

getadjustmenttype (), which describes the type of
modification .

SOftEng

ScrollPane

repaint():
} SoftEng
Scroll Pane

ScrollPane(int); Create a panel in which the state of
scrollbar is determined by the argument, that takes
values ScrollPane.SCROLLBARS_ALWAYS: The
scrollbar are always present
ScrollPane.SCROLLBARS_AS_NEEDED: The scrollbar
are displayed when is it necessary to see the full
component daughter
ScrollPane.SCROLLBARS_NEVER: The scrollbar are
never present

SOftEng

The scroll bread (sliding panels) are containers in which
you can define a single component:

If the component and largest of the panel that
contains, the panel has scrollbar, that allow you to
move a "window mobile" on a component, so that we
can see all the parties

The scrolling and managed by

the methods AWT builders are :

ScrollPane (); create a panel in which the scrollbar are
automatically added if the internal component great
there is more of the panel

SOftEng

Scroll Pane

To create a Scroll Pane:

ScrollPane scroller = new ScrollPane();

Panel panell = new Panel();

scroller.add(panel1);

add(scroller);
The methods are applicable :
getScrollPosition(): Returns an object point that is,
within the component daughter, the position of the
angle in the top left of Scroll Pane
setscrollposition (int, int), setscrollposition (point):
flows the panel until the position specified
getViewportSize(): Returns an object dimension
which is the size of the window display of Scroll Pane
SOtEng

Cursor

The cursor is the image that represents the mouse-
pointer (arrow, hand, hourglass,. . .). It is possible to
add a cursor to any component and modify it at any
time .

The method manufacturer is :

= Cursor (int): create a cursor, the type and determined
by parameter that can take the following values :

e Cursor.DEFAULT_CURSOR: Cursor default (usually
the arrow)

e Cursor.CROSSHAIR_CURSOR: Cursor sign plus

e Cursor.HAND_CURSOR: Cursor hand

e Cursor.TEXT_CURSOR Cursor to 'i' for the inclusion

of the text
SOftEng

Cursor

Cursor

Available methods :
setCursor(Cursor): Set the cursor
getCursor(): Return the current cursor

getPredefinedCursor(): returns the type of cursor
default

To create a cursor :
Cursor cur = new Cursor(Cursor.HAND_CURSOR);
setCursor(cur);

SoOftEng

e Cursor.WAIT_CURSOR: Indicates that being a very
long (hourglass or watch

e Cursor.MOVE_CURSOR: shows that it is a shift in
course of an object

e Cursor.N_RESIZE_CURSOR,
Cursor.NE_RESIZE_CURSOR,

o Cursor.E_RESIZE_CURSOR,
Cursor.SE_RESIZE_CURSOR,

e Cursor.S_RESIZE_CURSOR,
Cursor.SW_RESIZE_CURSOR,

e Cursor.W_RESIZE_CURSOR,

. Cursor.NW_RESIZE CURSOR: Indicate that it is
in course the resizing a window

SOftEng

Component

Component

getSize() : Returns an object dimension which is
the size of the component (width and height are
obtained from variables of instance width and
height)

getMinimumSize(): Returns an object dimension
which represents the returns in a subject
dimension the minimum size of the component
(used by the operators of layout). should be
redefined for personalized components .

%etPrgferrquSize_(): return in a subject dimension
he dimension "ideal" of the component
setSize(Dimension): Door the size of the
component to that in the past as a parameter

SOftEng

The class component is the origin of the hierarchy of
AWT. Has methods that allow you to modify the
appearance of any component

= getBackground(), getForeground(): Returns an ob#'ect
color that is the background color or of the first floor
of the component

= setBackground(Color), setForeground(Color): Set the
background color or of the first floor of the
component

getFont(); setFont(Font): return the font corrente (in
un oggetto Font); Set the font of the component

SOftEng

Component

= contains(int,int) : Returns True if the coordinates x, y
specified are inside of the component
setVisible(boolean): With parameter false hides the
component, with parameter true makes it visible
isVisible(): Returns True if the component that is
visible, FALSE if it is hidden

setEnabled(boolean): Enables the management of the
events for that component with parameter true .
isEnabled(): Returns True if the component that is
empowered, FALSE if it is disabled

SOftEng

A complete example

import java.awt.*;
public class ColorTest extends
java.applet.Applet {

ColorControls RGBcontrols, HSBcontrols;

Canvas swatch;

public void init() {

setLayout(new GridLayout(1,3,10,10));

swatch = new Canvas(); // L'area in cui
// presentare il colore

swatch.setBackground(Color.black);

// 1l pannello di controllo

RGBcontrols = new ColorControls(this,
"Red", "Green", "Blue");

HSBcontrols = new ColorControls(this,
“Hue", "Saturation", "Brightness");

add(swatch);

add(RGBcontrols);

add(HSBcontrols);

}

SoOftEng

void update(ColorControls in) {
Color ¢;
int vl = Integer.parselnt(in.f1.getText();
int v2 = Integer.parselnt(in.f2.getText();
int v3 = Integer.parselnt(in.f3.getText();
if (in == RGBcontrols) { // converto a RGB
c = new Color(v1,v2, v3);
float(] HSB= Color.RGBtoHSB(c.getRed(),
c.getGreen(),c.getBlue(), (new floalﬁ]ii‘
HSB[0] *= 360;
HSB[1] *= 100;
HSB[2] *= 100;
HSBcontrols.f1 setText(String.valueOf((int)HSB[O]);
HSBcontrols.f2.setText(String.valueOf((intHSB[11);
HSBcontrols.f3.setText(String.valueOf((intHSB2]);
}
else { // converto a HSB
c=Color.getHSBColor((floativ1/360, (float)v2/100,
(float)v3/100);
RGBcontrols.f1.setText(String.valueOf(c.getRed()));
RGBcontrols.f2.setText(String.valueOf(c.getGreen());
RGBcontrols.f3.setText(String.valueOf(c.getBlue()));

swatch.setBackground(©); swatch.repaint(;
1

MenuBar

are available the following types of menu:
= menus, contained in a menu bar prepared in the upper part of

the window

= popup menu, which may appear at any point of applet or

applications

= The AWT provides the following classes for the management of

e

| Menugar | | Menultem |

[Menu

| | CheckBoxMenu |

SoOftEng

Menu

A complete example

import java.awt.*;
import java.awt.event.*;
class ColorControls extends Panel implements
FocusListener,ActionListener {
TextField f1, f2, f3;
ColorTest outerparent; //permette la notifica
//di update dello schermo alla
applet
ColorControls(ColorTest target, String I1,
String 12, String 13) {
outerparent = target;
setLayout(new GridLayout(3,2,10,10));
f1 = new TextField("0"
f2 = new TextField("0");
f3 = new TextField("0");
add(new Label(11, Label.RIGHT));
f1.addFocusListener(this);
f1.addActionListener(this);
add(f1);
add(new Label(12, Label.RIGHT));

SoftEng

f2.addFocusListener(this);
f2.addActionListener(this);
add(f2);

add(new Label(13, Label.RIGHT));
f3.addFocusListener(this);
f3.addActionListener(this);
add(f3);

ublic void focusGained(FocusEvent e) {

public void focusLost(FocusEvent e) {
outerparent.update(this);
}

p)u{blic void actionPerformed(ActionEvent
e

if (e.getSource() instanceof TextField)
outerparent.update(this);

by

MenuBar

Each window has a bar containing the menu commands.

To create the bar of commands
MenuBar mb = new MenuBar();

win.setMenuBar(mb); // method defined in the class frame

- To add the bar menu commands
Menu m = new Menu("File");
mb.add(m);

- To specify the menu dihelp
Menu hm = new Menu("Help");
mb.add(hm);

mb.setHelpMenu(hm); // Menu of help to the right in fund

- To enable or disable a menu
m.enable();
m.disable();

SoftEng

Menu

- sub-menu

You can define how menu

- voci normali, As instances of class menuitem

Menu m = new Menu("Tools");

m.add(new Menultem("Info"));

m.add(new Menultem("Colors"));

« menu entries in two states (toggle), as instances of class
CheckboxMenultem

CheckboxMenultem coords = new
CheckboxMenultem("Mostra coordinate");

m.add(coords);

SOMtEng

Menu sb = new Menu("Sizes");
m.add(sb);
sb.add(new Menultem("Small"));
sb.add(new Menultem("Medium"));
sb.add(new Menultem("Large"));

- seperator
Menultem separator = new Menultem(
m.add(separator);

SOftEng

actions arising from the menus

The popup menu

The selection of a menu entry generates an event of action
= it redefines the method actionPerformed()

public void actionPerformed(ActionEvent e){
if (e.getSource() instanceof Menultem) {
String label = ((Menultem)e.getSource()).getLabel();
if (label.equals("view details "))
toggleCoords();
else if (label.equals("Fill"))
fillcurrentArea();

}

=> Since checkboxmenuitem and " a subclass of menuitem, it is
not necessary to treat the voices in two states in a different way
from the other.

SoOftEng

The popup menu

the popup menu is displayed in response to events of the
mouse

=> It is possible to create context sensitive menus (to the
component on which it was created the event of the mouse)

To create a popup menu

- You create an instance of the class new :

PopupMenu pm = new PopupMenu("Edit");

+ There are the items such as in the case of normal menu
pm.add(new Menultem("Cut"));

pm.add(new Menultem("Copy"));

pm.add(new Menultem("Paste"));

- is added to the menu to the component

add(pm);

SoftEng

Example: window with menu

To show a popup menu
- using the method processmouseevent () of the class component
that allows to manage events of the generic mouse
- using the method ispopuptrigger () of Class mouseevent to
recognize the request of the popup menu
- Use the show () method of class to show the new menu
public void processMouseEvent(MouseEvent e){

if (e.isPopupTrigger() pm.show(
e.getComponent(), e.getX(), e.getY();
super.processMouseEvent(e);

}

SoOftEng

Example: window with menu

import java.awt.*; MenuBar mb = new MenuBar();
class MyFrame extends Frame { Menu m = new Menu("Colors");
TextField td; Menultem i = new Menultem("Red");
Label I; i.addActionListener(ha);
String msg = "This is a window"; m.add();

i = new Menultem("Green");
i.addActionListener(ha);
m.add(i);

i = new Menultem("Blue”);
i.addActionListener(ha);

MyFrame(String title) {

super(title);

setLayout(new BorderLayout());

| = new Label(msg, Label.CENTER);

|.setFont(new m.add(i);
Font("Helvetica",Font.PLAIN,12)); m.add(new Menultem(*-");

add("Center", |); CheckboxMenultem ¢ =

/] make dialog for this window new CheckboxMenultem("Bold");

td = new TextDialog(this, "Enter Text",true); c.addActionListener(ha);

td.setSize(150,100); m.add(c);

// button for showing Dialog mb.add(m);

Button b = new Button("Enter Text"); setMenuBar(mb); setSize(300,200);

MyFrameAction ha = new setVisible(true);
MyFrameAction(this); b . . .

b.addActionListener(ha); public static void main(String

add("South",b); args[’b)l{F "My Frame™):

SOftEng new MyFrame("My Frame");

Use of the windows in applications

class MyFrameAction implements ActionListener {
MyFrame theWin;

MyFrameAction(MyFrame win) {

theWin = win;

public void actionPerformed(ActionEvent e) {
if (e.getSource() instanceof Button)
theWin.td.show();
else if (e.getSource() instanceof Menultem) {
String label = ((Menultem)e.getSource()).getLabel();
if (label.equals("Red"))
theWin.l.setbackground(Color.red);
else if (label.equals("Green"))
theWin.l.setbackground(Color.green);
else if (label.equals("Blue"))
theWin.l.setbackground(Color.blue);
else if (label.equals("Bold")) {
if (theWin.l.getFont().isPlain())
theWin.l.setFont(new Font("Helvetica", Font.BOLD, 12));
else theWin.l.setFont(new Font("Helvetica", Font.PLAIN, 12));

} bl
S(Dfréng

- The main class of an application must be a subclass of frame
Class MyAppAWT extends Frame implements Runnable
- Inside of the method main () The application you create an instance of the
class
=>a normal window
- In the method manufacturer of myappawt to set the characteristics of the
window
import java.awt.*;
class MyAppAWT extends Frame {
MyAppAWT (String title) {
super(title);
add(new Button("OK");
add(new Button("Cancel");
}
public static void main(String argsl]) {
MyAppAWT a = new MyAppAWT("This is an application");
a.setSize(300,300);
a.show(); } }
SOftEng

Use of the windows in applications

- You must manage the event of closing the window:
hides or destroys the window and recalls the method
system.exit (0) to submit to the System and "leaving the
application

+ the main frame must implement the interface cu ic'e
windowlistener in “the method called windowclosing
when you close a window .

public void windowClosing(WindowEvent e) {
win.setVisible(false);

win.destroy();

System.exit(0);

}

SoOftEng

Library javax.swing

Library javax.swing

= Windows dialog customizable

= JOptionPane, JFileChooser,JColorChooser

= JTable and Jtree

= JEditorPane To edit text fonts with different
= Management of undo

SoOftEng

. (]axztensions in the graphic libraries from Java-Version

Many classes include graphic interface of the
corresponding class AWT but changes the creation
and there are new methods

La classe swing di solito aggiunge una ‘)’ davanti al
nome della corrispondente classe AWT (es: JFrame,
JButton, JLabel, ...)

Look and Feel selectable (stile Java,Windows,Mac)
The use of jcomponent simplifies the management
of the events of the keyboard ;

Container nested: both more "heavy" (jwindow,
jframe, jdialog and japplet) that the more "light"
(jinternalframe and jcomponent) delegate the
operations to a jrootpane. Any combination that is
permitted .

SOftEng

Example with Swing

Example with swing

public void actionPerformed(ActionEvent event){

Object source = event.getSource();

if (clickMeMode) {
text.setText("Button Clicked");
button.setText("Click Again");
clickMeMode = false;

}else {
text.setText("I'm a Simple Program");
button.setText("Click Me");
clickMeMode = true;

b}

SOftEng

import java.awt.*; import java.awt.event.*;import javax.swing.*;

public class SwingUl extends JFrame implements ActionListener,
WindowListener {

JLabel text, clicked; JButton button, clickButton; JPanel panel;
private boolean clickMeMode = true;
public SwingUI() { //Begin Constructor
text = new JLabel("I'm a Simple Program");
button = new JButton("Click Me");
button.addActionListener(this);
addWindowListener(this);
panel = new JPanel(); panel.setLayout(new BorderLayout());
panel.setBackground(Color.white); getContentPane().add(panel);
panel.add(BorderLayout.CENTER, text);
S_Eélrn)efl.(_aigg’lzoéderLaLyout.SOUTH, button); }//End Constructor

Example with swing

public static void main(String[] args){
SwingUl frame = new SwingUlI();
frame.setTitle("Example");
frame.pack();
frame.setVisible(true);
}
public void windowClosing(WindowEvent e) {
System.exit(0); }
public void windowActivated(WindowEvent e) { }
public void windowClosed (WindowEvent e) { }
public void windowDeactivated(WindowEvent e) { }
public void windowDeiconified(WindowEvent e) { }
public void windowOpened(WindowEvent e) { }
public void windowlconified(WindowEvent e) { }

SOftEng

Hierarchy of swing (similar to AWT)

et

Ok Peshendionm
Badifuttetanian
[t

< wEadiaE i
Tordaris
[
[
T

Fopephe

emocnsnt

JEeiFar

.
P <mi
SOftEng S —

Hierarchy swing (New components)

bt hower
EiboChanser

itk

gt —esttnrane
/4 Ao
Prressbia

ot

e

Sy
/ T
amaanent
| i
ST
(e
et
AFaclar

ol
e
e
RN DA

SOftEng

