
© SoftEng Group 1

Java Threads

Politecnico di Torino

What Are Threads?

 General-purpose solution for managing
concurrency.

 Multiple independent execution streams

 Shared state

Shared state
(variables , files)

Threads

© SoftEng Group 2

Politecnico di Torino

What Are Threads Used For?
 Operating systems: one kernel thread for

each user process.

 Scientific applications: one thread per CPU
(solve problems more quickly).

 Distributed systems: process requests
concurrently (overlap I/Os).

 GUIs:

Threads correspond to user actions; they can
help display during long-running computations.

Multimedia, animations.

Politecnico di Torino

Why Threads ?

 Imagine a stock-broker application
with a lot of complex capabilities:

download last stock option prices

check prices for warnings

analyze historical data for company
XYZ

© SoftEng Group 3

Politecnico di Torino

Single-threaded scenario

 In a single-threaded runtime environment,
these actions execute one after another

The next action can happen only when the
previous one is finished.

 If a historical analysis takes half an hour,
and the user selects to perform a download
and check afterward…

…the result may come too late to buy or sell
stock as a result.

Politecnico di Torino

Multi-threaded scenario

 Multithreading can really help

The download should happen in the background
(i.e. in another thread).

Other processes could happen at the same time
e.g. a warning could be communicated instantly.
All the while, the user is interacting with other
parts of the application.

The analysis, too, could happen in a separate
thread, so the user can work in the rest of the
application while the results are being calculated.

© SoftEng Group 4

Politecnico di Torino

What's Wrong With Threads?

 Too hard for most programmers to use

 Even for experts, development is painful

 Threads break abstraction: can't design
modules independently.

casual wizardsall programmers

Visual Basic programmers

C programmers

C++ programmers

Threads programmers

Java programmers

Politecnico di Torino

Process

 From an Operating System viewpoint, a
Process is an instance of a running
application

 A Process has it own private virtual address
space, code, data, and other O.S. resources
like opened files, etc..

 A process also contains one or more
threads that run in the context of the
process.

© SoftEng Group 5

Politecnico di Torino

Thread

 A thread is the basic entity to which the operating
system allocates CPU time.

 A thread can execute any part of the application's
code, including a part currently being executed by
another thread.

 All threads of a process share the virtual address
space, global variables, and operating system
resources of the process.

Politecnico di Torino

Multitasking
 For User, multitasking is the ability to have several

applications open and working at the same time.

A user can edit a file with one application while another
application is printing or recalculating a spreadsheet.

 For Developer, multitasking is the ability to create
applications which create processes that use more
than one thread of execution

one thread that handles interactions with the user (keyboard and
mouse input), while

another threads with lower priority perform the other work of the
process.

© SoftEng Group 6

Politecnico di Torino

Multitasking

 A multitasking operating system assigns CPU
time (slices) to threads

 O.S. is preemptive, if a thread is executed until

time slice is over or it ends its execution;

It blocks (synchronization with threads or resources)

another thread acquires more priority

 Using small time-slice (e.g. 20 ms) thread
execution seems to be parallel

Which can be actually parallel in multiprocessor
systems

Politecnico di Torino

Multitasking Problems
 O.S. consumes memory for the structures required by

both processes and threads.

Keeping track of a large number of threads also consumes
CPU time.

 Multiple threads accessing the same resources must
be synchronized to avoid conflicts, or can lead to
problems such as deadlock and race conditions :

System resources (communications ports, disk drives),

Handles to resources shared by multiple processes (files)

Resources of a process (variables used by multiple threads)

© SoftEng Group 7

Politecnico di Torino

JVM and Operating System
 Code running concurrently given that there's

only one CPU on most of the machines
running Java.

 The JVM gets its turn at the CPU by whatever
scheduling mechanism the OS uses

 JVM operates like a mini-OS and schedules its
own threads regardless of the underlying
operating system.

 In some JVMs, the Java threads are actually
mapped to native OS threads.

Politecnico di Torino

JVM and Operating System

 Do not interpret the behavior on one machine
as "the way threads work“

 Design a program so that it will work
regardless of the underlying JVM.

 Thread motto:

When it comes to threads,

very little is guaranteed

© SoftEng Group 8

Politecnico di Torino

JVM Scheduler

 The Scheduler is the JVM part that decides

which thread should run at any given moment,

takes threads out of the running state.

Some JVMs use O.S. scheduler (native threads)

 Assuming a single processor machine:

Only one thread can actually run at a time.

Only one stack can ever be executing at one time

 The order in which runnable threads are
chosen to be THE ONE running is NOT
guaranteed.

Politecnico di Torino

Create a Thread

 Threads can be created by extending Thread
and overriding the run() method.

 Thread objects can also be created by calling
the Thread constructor that takes a Runnable
argument (the target of the thread)

 It is legal to create many Thread objects using
the same Runnable object as the target.

© SoftEng Group 9

Politecnico di Torino

Create a Thread

1. Extends Thread class

class X extends Thread {}

t = new X(); t.start(); // Create and start

2. Implementing Runnable interface (better)

class Y implements Runnable {

public void run() { //code here }

}

Thread r =new Thread (new Y);

r.start(); //invoke run() & create a new call-stack

Politecnico di Torino

Example: extends Thread
 Write two threads, each counting till X
class Counter extends Thread {

private int num; String name;

public Counter(String nn, int n) {

name= nn; num = n; }

public void run(){

for(int i=0; i<num; ++i)

System.out.print(name+": "+i +" ");

}

}

© SoftEng Group 10

Politecnico di Torino

Example: implements Runnable

class Counter2 implements Runnable {

private int num;

public Counter2(int n) { num = n; }

public void run(){

for(int i=0; i<num; ++i)

System.out.print(i+" ");

}

}
public static void main(String args[]) {

Thread t1,t2;

t1 = new Thread(new Counter2(10));

t2 = new Thread(new Counter2(5));

t1.start();

t2.start();

}

Politecnico di Torino

Start a Thread

 When a Thread object is created, it does not
become a thread of execution until its start()
method is invoked.

 When a Thread object exists but hasn't been
started, it is in the new state and is not
considered alive.

 Method start() can be called on a Thread
object only once.

 If start() is called more than once on same
object, it will throw a RuntimeException

© SoftEng Group 11

Politecnico di Torino

Starting a Thread

Politecnico di Torino

Running Multiple Threads
class NameRunnable implements Runnable {

public void run() {

for (int x = 1; x <= 3; x++) {

System.out.println("Run by “+ Thread.currentThread().getName()+ ", x is “+ x);

} } }

public class ManyNames {

public static void main(String [] args) { // Make one Runnable

NameRunnable nr = new NameRunnable();

Thread one = new Thread(nr); Thread two = new Thread(nr);

Thread three = new Thread(nr);

one.setName(“Paolo"); two.setName(“Marco");

three.setName(“Maurizio");

one.start(); two.start(); three.start();

} }

Output is
Non-Deterministic

© SoftEng Group 12

Politecnico di Torino

Running Multiple Threads
 Note Well: It is not guaranteed that threads

will start running in the order they were
started

 It is not guaranteed that a thread keeps
executing until it's done.

 It is not guaranteed that a loop completes
before another thread begins

 Nothing is guaranteed except:

Each thread will start, and each thread will run to
completion, hopefully.

Java Thread States

© SoftEng Group 13

Politecnico di Torino

Java Thread States

start() run()
ends

New
Thread

JVM
scheduler

sleep
wait
join

notify

Politecnico di Torino

Thread state: Running
 This is the state a thread is in when the

thread scheduler selects it (from the
runnable pool) to be the currently executing
process.

 A thread can transition out of a running
state for several reasons, including because
“the thread scheduler decided it”

 Only one way to get to the running state:
the scheduler chooses a thread from the
runnable pool.

© SoftEng Group 14

Politecnico di Torino

Thread state: Runnable

 A thread is queued & eligible to run,

but the scheduler has not selected it to be
the running thread

 A thread first enters the runnable state
when the start() method is invoked

 A thread can also return to the runnable
state after either running or coming back
from a blocked, waiting, or sleeping state

 When the thread is in the runnable state, it
is considered alive

Politecnico di Torino

Thread state: Blocked

 This is the state a thread is in

when it„s NOT eligible to run.

It might return to a runnable state later if a
particular event occurs.

 A thread may be blocked waiting for a
resource (I/O or an object's lock)

e.g. if data comes in through the input stream
the thread code is reading from,

the object's lock suddenly becomes available.

© SoftEng Group 15

Politecnico di Torino

Thread state: Sleeping

 A thread may be sleeping because

the thread's run() code tells it to sleep for
some period of time,

 Back to Runnable state when it wakes up
because its sleep time has expired.

try {

Thread.sleep(5*60*1000); // Sleep for 5 min

} catch (InterruptedException ex) { }

Politecnico di Torino

Example sleep

class NameRunnable implements Runnable {

public void run() {

for (int x = 1; x < 4; x++) {

System.out.println(“Run by”+Thread.currentThread().getName());

try {

Thread.sleep(1000);

} catch (InterruptedException ex) { }

} } }

public class ManyNames {

public static void main (String [] args) {

NameRunnable nr = new NameRunnable();

Thread one = new Thread(nr); one.setName(“Homer");

Thread two = new Thread(nr); two.setName("Lisa");

Thread three = new Thread(nr); three.setName(“Bart");

one.start(); two.start(); three.start();

} }

This code outputs
Homer, Lisa, Bart
alternating nicely

© SoftEng Group 16

Politecnico di Torino

Thread state: Waiting

 A thread run code causes it to wait

 It come back to Runnable state when
another thread sends a notification

 Used for threads interaction

 Note Well: one thread does not tell another
thread to block.

Politecnico di Torino

Join
 The join() method lets one thread "join onto

the end” of another thread.

Thread t = new Thread();

t.start(); t.join();

 Current thread move to Waiting state and it
will be Runnable when thread t is dead

 A timeout can be set to wait for a thread‟s end

t.join(5000); // wait „t‟ for 5 seconds: if „t‟ is not

// finished, then current thread is Runnable again

© SoftEng Group 17

Politecnico di Torino

Thread Priorities

 A thread always runs with a priority number

 The scheduler in most JVMs uses preemptive,
priority-based scheduling

 Usually time-slicing is used:

each thread is allocated a fair amount of time

After that a thread is sent back to runnable to give
another thread a chance

 JVM specification does not require a VM to
implement a time-slicing scheduler !!!

some JVM may use a scheduler that lets one thread stay
running until the thread completes its run() method

Politecnico di Torino

JVM Scheduling Policy

JVM Scheduler policy can be:
 non-preemptive: current thread is executed until the end,

unless thread expilicitely releases CPU to let another thread
take its turn

used in real-time apps (interruption can cause problems)
 preemptive time-slicing: thread is executed until its time-

slice is over, then the JVM suspends it and starts antoher
runnable thread

Simpler development, as all resources handled by JVM
Apps do not require to use yield() to release resources

High priority threads:
 Are executed more often, or have longer time-slice
 Stop execution of lower-priority threads before

their time-slice is over

© SoftEng Group 18

Politecnico di Torino

Setting a Thread‟s Priority

 By default, a thread gets the priority of the
thread of execution that creates it.

 Priority values are defined between 1 and 10
Thread.MIN_PRIORITY (1)

Thread.NORM_PRIORITY (5)

Thread.MAX_PRIORITY (10)

 Priority can be directly set
FooRunnable r = new FooRunnable();

Thread t = new Thread(r);

t.setPriority(8); t.start();

Politecnico di Torino

yield

 The method yield() make the currently
running thread back to Runnable state

It allows other threads of the same priority to get
their turn

 yield() will cause a thread to go from running
to runnable, but it might have no effect at all

There's no guarantee the yielding thread won't
just be chosen again over all the others!

© SoftEng Group 19

Politecnico di Torino

Example: Checking JVM Scheduler type

 This code can be used to check if scheduler is
preemptive or not:

public class Hamlet implements Runnable {
public void run() {
while (true)

System.out.println(Thread.currentThread().getName());
} }
public class TryHamlet {

public static void main(String argv[]) {
Hamlet aRP = new Hamlet ();
new Thread(aRP, “To be ").start();
new Thread(aRP, “Not to be").start();

} }

 If non-preemptive the thread chosen first run
forever and it never releases CPU

 If preemptive threads randomly alternate on output

Politecnico di Torino

 Code is less dependent from the scheduler type,
because each thread releases CPU after one iteration:

public class Hamlet implements Runnable {

public void run() {

while (true) {

System.out.println(Thread.currentThread().getName());

Thread.yield(); // allow other thread to run

}

} }

Example with yield()

Output:

To be

Not to be

To be

Not to be

To be

Not to be

To be

Not to be

...

© SoftEng Group 20

Politecnico di Torino

Leaving the Running state

There are 3 ways for a thread to do it:

 sleep(): guaranteed to cause the current
thread to stop executing for at least the
specified sleep duration

 yield(): the currently running thread moves
back to runnable, to give room to other
threads with same priority

 join(): stop executing until the thread it
joins with completes

Politecnico di Torino

Move a Thread out from Running state

There are 4 cases when JVM scheduler does it:

 The thread's run() method completes

 Thread calls wait() on an object

 A thread can't acquire the lock on the object

 The thread scheduler can decide to move
the current thread from running to runnable
in order to give another thread a chance to
run.

© SoftEng Group 21

Politecnico di Torino

A word of advice
 Some methods may look like they tell

another thread to block, but they don't.

 If t is a thread object reference, you can
write something like this:

t.sleep() or t.yield()

 They are static methods of the Thread class:

they don't affect the instance t !!!

instead they affect the thread in execution

That‟s why it's a bad idea to use an instance
variable to access a static method

Synchronization in Java

© SoftEng Group 22

Politecnico di Torino

Example scenario

 What happens when two different threads
are accessing the same data ?

 Imagine that two people each have ATM
cards, but both cards are linked to only one
account. class Account {

private int balance = 50;
public int getBalance() {

return balance;
}
public void withdraw(int amount) {

balance = balance - amount;
} }

Politecnico di Torino

Example scenario (II)

 Before one of them makes a withdrawal,
first check the balance to be certain there's
enough to cover the withdrawal

1. Check the balance.

2. If there's enough in the account (in this
example, at least 10), make the withdrawal

 What happens if something separates step 1
from step 2 ?

© SoftEng Group 23

Politecnico di Torino

Example scenario (III)
 Marge checks the balance and there is enough (10)

 Before she withdraws money, Homer checks the balance
and also sees that there's enough for his withdrawal.

 He is seeing the account balance before Marge actually
debits the account…

 Both Marge and Homer believe there's enough to make
their withdrawals !

 If Marge makes her withdrawal…

 …there isn't enough in the account for
Homer's withdrawal

 … but he thinks there is since when he
checked, there was enough!

Politecnico di Torino

Example: code
public class AccountDanger implements Runnable {

private Account account = new Account();

public static void main (String [] args) {

AccountDanger r = new AccountDanger();

Thread one = new Thread(r); Thread two = new Thread(r);

one.setName(“Homer”); two.setName(“Marge");

one.start(); two.start();

}

public void run() {

for (int x = 0; x < 5; x++) {

makeWithdrawal(10);

if (account.getBalance() < 0)

System.out.println("account is overdrawn!");

} }

© SoftEng Group 24

Politecnico di Torino

private void makeWithdrawal(int amount) {

if (account.getBalance() >= amount) {

System.out.println(Thread.currentThread().getName() +

" is going to withdraw");

try {

Thread.sleep(500);

} catch(InterruptedException ex) { }

account.withdraw(amt);

System.out.println(Thread.currentThread().getName()+

" completes the withdrawal");

} else {

System.out.println("Not enough in account for “+
Thread.currentThread() .getName()+ "to withdraw “+
account.getBalance());

} } }

Politecnico di Torino

Example: a possible output
1. Homer is going to withdraw

2. Marge is going to withdraw

3. Homer completes the withdrawal

4. Homer is going to withdraw

5. Marge completes the withdrawal

6. Marge is going to withdraw

7. Homer completes the withdrawal

8. Homer is going to withdraw

9. Marge completes the withdrawal

10. Marge is going to withdraw

11. Homer completes the withdrawal

5: Marge completes her withdrawal and
then before Homer completes his,
Marge does another check on the
account on line 6. And so it continues
until line 8, where Homer checks the
balance and sees that it's 20.

9: Marge completes a withdrawal, and
now balance is 10.

10: Marge checks again, sees that the
balance is 10, so she knows
she can do a withdrawal.
But she didn't know that Homer, too, has
already checked the balance on line 8 so
he thinks it's safe to do the withdrawal!

11: Homer completes the withdrawal he
approved on line 8. This takes the
balance to zero. But Marge still has a
pending withdrawal that she got
approval for on line 10!

© SoftEng Group 25

Politecnico di Torino

Example: a possible output (II)
12. Not enough in account for Homer to withdraw 0

13. Not enough in account for Homer to withdraw 0

14. Marge completes the withdrawal

15. account is overdrawn!

16. Not enough in account for Marge to withdraw -10

17. account is overdrawn!

18. Not enough in account for Marge to withdraw -10

19. account is overdrawn!

12-13: Homer checks the
balance and finds that
there's not enough in the
account

14: Marge completes her withdrawal and
D‟Oh!
The account is now overdrawn by 10 !!!!!

This is an example of Race Condition

Politecnico di Torino

Race Condition

A problem happening whenever:

 Many threads can access the same

resource (typically an object's instance
variables)

 This can produce corrupted data if one
thread "races in" too quickly before an
operation has completed.

© SoftEng Group 26

Politecnico di Torino

Example: Preventing Race Conditions

We must guarantee that the two
steps of the withdrawal are NEVER
split apart.

 It must be an atomic operation:
It is completed before any other thread
code that acts on the same data

…regardless of the number of actual
instructions

Politecnico di Torino

Preventing Race Conditions

 You can't guarantee that a single thread will
stay running during the atomic operation.

 But even if the thread running the atomic
operation moves in and out of the running
state, no other running thread will be able to
act on the same data.

 How to protect the data:

Mark the variables private.

Synchronize the code that modifies the variables.

© SoftEng Group 27

Politecnico di Torino

Synchronization in Java

 The modifier synchronized

can be applied to a method or a code block

locks a code block: ONLY ONE thread can access

Adding a word and example problem is solved!

private synchronized void makeWithdrawal(int amount)

Homer is going to withdraw

Homer completes the withdrawal

Marge is going to withdraw

Marge completes the withdrawal

Homer is going to withdraw

Homer completes the withdrawal

Marge is going to withdraw

Marge completes the withdrawal

Homer is going to withdraw

Homer completes the withdrawal

Not enough in account for Marge to withdraw 0

Not enough in account for Homer to withdraw 0

Not enough in account for Marge to withdraw 0

Not enough in account for Homer to withdraw 0

Not enough in account for Marge to withdraw 0

Politecnico di Torino

Synchronization and Locks

 Every object in Java has one built-in lock

 Enter a synchronized non-static method => get the
lock of the current object code we're executing.

 If one thread got the lock, other threads have to
wait to enter the synchronized code until the lock
has been released (thread exits the synch. method)

 Not all methods in a class need to be synchronized.

 Once a thread gets the lock on an object, no other
thread can enter ANY of the synchronized methods
in that class (for that object).

© SoftEng Group 28

Politecnico di Torino

Synchronization and Locks

 Multiple threads can still access the class's
non-synchronized methods

Methods that don't access the data to be
protected, don„t need to be synchronized

 Thread going to sleep, doesn't release locks

 A thread can acquire more than one lock, e.g.

1. a thread can enter a synchronized method

2. then immediately invoke a synchronized method
on another object

Politecnico di Torino

Synchronize a code block

Is equivalent to this:

public synchronized void doStuff() {

System.out.println("synchronized");

}

public void doStuff() {

synchronized(this) {

System.out.println("synchronized");

} }

© SoftEng Group 29

Politecnico di Torino

Synchronize a static method

Is equivalent to this:

public static synchronized int getCount() {

return count;

}

public static int getCount() {

synchronized(MyClass.class) {

return count;

} }

MyClass.class represents the single lock on the class
which is different from the objects’ locks

Politecnico di Torino

When Do I Need To Synchronize?

 Two threads executing the same method at
the same time may:

use different copies of local vars => no problem

access fields that contain shared data

 To make a thread-safe class:

methods that access changeable fields need to be
synchronized.

Access to static fields should be done from static
synchronized methods.

Access to non-static fields should be done from
non-static synchronized methods

© SoftEng Group 30

Politecnico di Torino

Example
public class NameList {

private List names =

Collections.synchronizedList(new LinkedList());

public void add(String name) {

names.add(name);

}

public String removeFirst() {

if (names.size() > 0)

return (String) names.remove(0);

else return null;

} }

Returns a List whose

methods are all synchronized

and "thread-safe"

Can the NameList class be used

safely from multiple threads?

Politecnico di Torino

Example (II)
class NameDropper extends Thread {

public void run() {

String name = nl.removeFirst(); System.out.println(name);

} }

public static void main(String[] args) {

final NameList nl = new NameList(); nl.add(“Jacob");

Thread t1 = new NameDropper(); t1.start();

Thread t2 = new NameDropper(); t2.start();

} Thread t1 executes names.size(), which returns 1.

Thread t2 executes names.size(), which returns 1.

Thread t1 executes names.remove(0), which returns Jacob.

Thread t2 executes names.remove(0), which throws an exception

because the list is now empty.

© SoftEng Group 31

Politecnico di Torino

Example (III)
 In a "thread-safe" class each individual method is

synchronized.

 But nothing prevents another thread from doing
something else to the list in between those two calls

 Solution: synchronize the code yourself !

public class NameList {

private List names = new LinkedList();

public synchronized void add(String name) {

names.add(name);

}

public synchronized String removeFirst() {

if (names.size() > 0)

return (String) names.remove(0);

else return null;

} }

Politecnico di Torino

Deadlock

 Deadlock occurs when two threads are
blocked, with each waiting for the other‟s
lock.

Neither can run until the other gives up its
lock, so they wait forever

 Poor design can lead to deadlock

 It is hard to debug code to avoid deadlock

© SoftEng Group 32

Politecnico di Torino

Thread Deadlock
public class DeadlockRisk {

private static class Resource { public int value; } }

private Resource resourceA = new Resource();

private Resource resourceB = new Resource();

public int read() {

synchronized(resourceA) { // May deadlock here !

synchronized(resourceB) {

return resourceB.value + resourceA.value;

} } }

public void write(int a, int b) {

synchronized(resourceB) { // May deadlock here !

synchronized(resourceA) {

resourceA.value = a;

resourceB.value = b;

} } } }

• The reader thread will

have resourceA,

• the writer thread will

have resourceB,

•… and both will get

stuck waiting for the

other !!!

Thread Interactions

© SoftEng Group 33

Politecnico di Torino

Synchronization in Object class

 void wait()

Causes current thread to wait until another
thread invokes the notify() method or the
notifyAll() method for this object.

 void notify()

Wakes up a single thread that is waiting on this
object's lock.

 void notifyAll()

Wakes up all threads that are waiting on this
object's lock.

Politecnico di Torino

Wait

 The wait() method lets a thread say:

“There's nothing for me to do now, so put
me in your waiting pool and notify me when
something happens that I care about.”

 An object lock can be signaled or nonsignaled

 When calling wait() :

On a signaled object lock
thread keeps executing

On a nonsignaled object lock
thread is suspended

nonsignaled

signaled

© SoftEng Group 34

Politecnico di Torino

Notify & NotifyAll

 The notify() method send a signal to
one of the threads that are waiting in
the same object's waiting pool.

 The notify() method CANNOT specify
which waiting thread to notify.

 The method notifyAll() is similar but
only it sends the signal to all of the
threads waiting on the object.

Politecnico di Torino

Mutual Exclusion

 A thread invokes wait() or notify() on a
particular object, and the thread must
currently hold the lock on that object

Called from within a synchronized context

 A thread owns in mutual exclusion a critical
region when he has called wait() and it has
not released the object yet (calling notify)

 A critical region is nonsignaled when is
owned by a thread, signaled otherwise.

© SoftEng Group 35

Politecnico di Torino

Example
class ThreadA {

public static void main(String [] args) {

ThreadB b = new ThreadB(); b.start();

synchronized(b) {

try {

System.out.println("Waiting for b to complete");

b.wait();

} catch (InterruptedException e) {}

System.out.println("Total is: "

+ b.total);

} }

class ThreadB extends Thread {

int total;

public void run() {

synchronized(this) {

for(int i=0;i<100;i++)

total += i;

notify();

} } }

Politecnico di Torino

Example: Java FIFO
import java.util.ArrayList;

public class FIFO{

private ArrayList v;

FIFO() {

v = new ArrayList(3);

}

public synchronized void

insert(Object o) {

v.addElement(o);

notify();

}

public synchronized

Object extract()

throws Exception {

Object temp;

if (v.size()==0)

wait();

temp=v.get(0);

v.remove(0);

return(temp);

}

}

© SoftEng Group 36

Politecnico di Torino

Example with multiple readers
class Reader extends Thread {

Calculator c;

public Reader(Calculator calc) {

c = calc;

}

public void run() {

synchronized(c) {

try {

System.out.println("Waiting for

calculation...");

c.wait();

} catch (InterruptedException e) {}

System.out.println("Total is: " +

c.total);

} } }

public static void main(String [] args) {

Calculator calculator = new Calculator();

new Reader(calculator).start();

new Reader(calculator).start();

new Reader(calculator).start();

calculator.start();

}

class Calculator extends Thread {

int total;

public void run() {

synchronized(this) {

for(int i=0;i<100;i++) {

total += i;

}

notifyAll();

} } }

Politecnico di Torino

Example

class Machine extends Thread {

Operator operator; // initialized

public void run(){

while(true){

synchronized(operator){

try {

operator.wait();

} catch(InterruptedException ie) {}

// Send machine steps to hardware

} } } }

class Operator extends Thread {

public void run(){

while(true){

// Get shape from user

synchronized(this){

// Calculate new steps from shape

notify();

} } } }

ONLY when the operator thread
exits from the synchronized
block => the hardware thread
can start processing the
machine steps.

© SoftEng Group 37

Politecnico di Torino

Comments to Examples

 Ok if the waiting threads have called wait() before
the other thread executes the notify()

 But what happens if, e.g., the Calculator runs first
and calls notify() before the Readers have started
waiting?

…the waiting Readers will keep waiting forever !!

 Better use a loop checking a conditional expression

and only waits if the thing you're waiting for has
not yet happened

Politecnico di Torino

Better Solution
class Machine extends Thread {

List<Instructions> jobs =new ArrayList<Instructions>();

public void addJob(Instructions job) {

synchronized (jobs) {

jobs.add(job); jobs.notify();

} }

public void run(){

while(true){

synchronized(jobs){

// wait until at least one job is available

while (jobs.isEmpty()) {

try {

jobs.wait();

} catch (InterruptedException ie) { }

}

// If we get here, we know that jobs is not empty

Instructions instructions = jobs.remove(0);

// Send machine steps to hardware

} } } }

class Operator extends Thread {

Machine machine; //initialized

public void run(){

while(true){

// Get shape from user

synchronized(this){

// Calculate new steps from shape

machine.addJob(job);

}

} } }

© SoftEng Group 38

Politecnico di Torino

Spontaneous Wakeup
 A thread may wake up even though no code has

called notify() or notifyAll()

Sometimes the JVM may call notify() for reasons of its own,

Other class calls it for reasons you just don't know.

 When your thread wakes up from a wait(), you don't
know for sure why it was awakened !

 Solution: putting the wait() method in a while loop
and re-checking the condition:

We ensure that whatever the reason we woke up, we will
re-enter the wait() only if the thing we were waiting for
has not happened yet.

Politecnico di Torino

Livelock

 A livelock happens when threads are actually
running, but no work gets done

what is done by a thread is undone by another

 Ex: each thread already holds one object and
needs another that is held by the other
thread.

 What if each thread unlocks the object it
owns and picks up the object unlocked by
the other thread ?

These two threads can run forever in lock-step!

© SoftEng Group 39

Politecnico di Torino

Thread Starvation

 Wait/notify primitives of the Java language
do not guarantee liveness (=> starvation)

 When wait() method is called

thread releases the object lock prior to
commencing to wait

and it must be reacquired before returning
from the method, post notification

Politecnico di Torino

Thread Starvation

 Once a thread releases the lock on an object
(following the call to wait), it is placed in a
object‟s wait-set

Implemenented as a queue by most JVMs

When a notification happens, a new thread will
be placed at the back of the queue

 By the time the notified thread actually gets
the monitor, the condition for which it was
notified may no longer be true …

It will have to wait again

This can continue indefinitely => Starvation

© SoftEng Group 40

Politecnico di Torino

Recap: Threads Are Hard

 Synchronization:

Must coordinate access to shared data with locks.

Forget a lock? Corrupted data.

 Deadlock:

Circular dependencies among locks.

Each process waits for some other process:
system hangs.

lock A lock Bthread 1 thread 2

Politecnico di Torino

Recap: Threads Are Hard

 Achieving good performance is hard:

Simple locking yields low concurrency.

Fine-grained locking increases complexity

O.S. limits performance (context switches)

 Threads not well supported:

Hard to port threaded code (PCs? Macs?).

Standard libraries not thread-safe.

 Hard to debug :
data dependencies
timing dependencies

Few debugging tools

