Package ‘effsize’

May 21, 2014

Type Package
Title Efficient effect size computation
Version 0.5.1
Date 2014-05-21
Author Marco Torchiano
Maintainer Marco Torchiano <marco.torchiano@polito.it>

Description This package contains the functions to compute the standardized
effect sizes for experiments (Cohen d, Hedges g, Cliff delta, Vargha and Delaney A).
The computation algorithms have been optimized to allow efficient computation even
with very large data sets.

URL http://softeng.polito.it/software/effsize/
License GPL-2

R topics documented:

 effsize-package . 1
 cliff.delta . 2
 cohen.d . 4
 print.effsize . 6
 VD.A . 7

Index 9

Description

This package contains functions to compute effect sizes both based on means difference (Cohen’s
d and Hedges g), dominance matrices (Cliff’s Delta) and stochastic superiority (Vargha and Delaney
A).

The computation (especially for Cliff’s Delta) is carried on with highly efficient algorithms.

Details
The main functions are:

- `cliff.delta`
- `cohen.d`
- `VD.A`.

Change history

- **0.3.1** Fixed a bug in `cohen.d` when `PAIRED=TRUE`, now the `PAIRED` parameter has no effect, it is left just for compatibility. In a future code clean-up it may be removed.
- **0.4** Implemented a new algorithm with improved memory and time complexity. In particular new time complexity is $T = O(n1\log(n2))$ vs. the previous $T = O(n1*n2)$, and new memory complexity $M = O(n1 + n2)$ vs. the previous $M = O(n1 * n2)$. In practice now the computation becomes feasible in a "reasonable" time.
- **0.4.1** Code clean-up and optimization using vectorized binary partitioning.
- **0.5** Added Vargha and Delaney A and fixed minor bugs with Cohen.d.
- **0.5.1** Modified the Vargha and Delaney A computation to minimize accuracy errors.

Author(s)

Marco Torchiano http://softeng.polito.it/torchiano/

cliff.delta

Cliff’s Delta effect size for ordinal variables

Description

Computes the Cliff’s Delta effect size for ordinal variables with the related confidence interval using efficient algorithms.

Usage

```r
cliff.delta(treatment, ... )
```

```r
## S3 method for class formula
cliff.delta(formula, data=list() ,conf.level=.95,
            use.unbiased=TRUE, use.normal=FALSE,
            return.dm=FALSE, ...)
```

```r
## Default S3 method:
cliff.delta(treatment, control, conf.level=.95,
            use.unbiased=TRUE, use.normal=FALSE,
            return.dm=FALSE, ...)
```
Arguments

- treatment: numeric vector or ordered factor of data values for the treatment group (see Details)
- control: numeric vector or ordered factor of data values for the control group (see Details)
- conf.level: confidence level of the confidence interval
- use.unbiased: a logical indicating whether to compute the delta's variance using the "unbiased" estimate formula or the "consistent" estimate
- use.normal: logical indicating whether to use the normal or Student-t distribution for the confidence interval estimation
- return.dm: logical indicating whether to return the dominance matrix. **Warning:** the explicit computation of the dominance uses a sub-optimal algorithm both in terms of memory and time
- formula: a formula of the form \(y \sim f \), where \(y \) is a numeric variable giving the data values and \(f \) a factor with two levels giving the corresponding group
- data: an optional matrix or data frame containing the variables in the formula \(\text{formula} \). By default the variables are taken from \(\text{environment(}\text{formula}\text{)} \).
- ...: further arguments to be passed to or from methods.

Details

Uses the original formula reported in (Cliff 1996).
If the dominance matrix is required i.e. \(\text{return.dm=TRUE} \) the full matrix is computed thus using the naive algorithm. Otherwise, if treatment and control are factors then the optimized linear complexity algorithm is used, otherwise the RLE algorithm (with complexity \(n \log n \)) is used.

Value

A list of class \texttt{effsize} containing the following components:

- estimate: the Cliff's delta estimate
- conf.int: the confidence interval of the delta
- var: the estimated variance of the delta
- conf.level: the confidence level used to compute the confidence interval
- dm: the dominance matrix used for computation, only if \(\text{return.dm} \text{ is TRUE} \)
- magnitude: a qualitative assessment of the magnitude of effect size
- method: the method used for computing the effect size, always "Cliffs Delta"
- variance.estimation: the method used to compute the delta variance estimation, either "unbiased" or "consistent"
- CI.distribution: the distribution used to compute the confidence interval, either "Normal" or "Student-t"

The magnitude is assessed using the thresholds provided in (Romano 2006), i.e. \(|d|<0.147 \) "negligible", \(|d|<0.33 \) "small", \(|d|<0.474 \) "medium", otherwise "large"
Author(s)

Marco Torchiano http://softeng.polito.it/torchiano/

References

See Also

cohen.d, print.effsize

Examples

Example data from Hogarty and Kromrey (1999)
treatment <- c(10,10,20,20,30,30,40,50)
control <- c(10,20,30,40,40,50)
res = cliff.delta(treatment,control,return.dm=TRUE)
print(res)
print(res$dm)

cohen.d

Cohen’s d and Hedges g effect size

Description

Computes the Cohen’s d and Hedges’ g effect size statistics.

Usage

cohen.d(d, ...)

S3 method for class formula
cohen.d(formula,data=list(),...)

Default S3 method:
cohen.d(d,f,pooled=TRUE,paired=FALSE,
 na.rm=FALSE, hedges.correction=FALSE,
 conf.level=0.95, ...)

cohen.d
Arguments

d a numeric vector giving either the data values (if f is a factor) or the treatment group values (if f is a numeric vector)
f either a factor with two levels or a numeric vector of values
pooled a logical indicating whether compute pooled standard deviation or the whole sample standard deviation
paired deprecated a logical indicating whether to consider the values as paired Since version 0.3.1 this parameter is ignored and may be removed in future code clean-ups
na.rm logical indicating whether NA should be removed before computation
hedges.correction logical indicating whether apply the Hedges correction
conf.level confidence level of the confidence interval
formula a formula of the form y ~ f, where y is a numeric variable giving the data values and f a factor with two levels giving the corresponding groups
data an optional matrix or data frame containing the variables in the formula formula. By default the variables are taken from environment(formula).
... further arguments to be passed to or from methods.

Details

The function computes the value of Cohen’s d statistics (Cohen 1988). If required (hedges.correction==TRUE) the Hedges g statistics is computed instead (Hedges and Holkin, 1985).

Also a quantification of the effect size magnitude is performed using the thresholds define in Cohen (1992). The magnitude is assessed using the thresholds provided in (Cohen 1992), i.e. ld1<0.2 "negligible", ld1<0.5 "small", ld1<0.8 "medium", otherwise "large"

The variance of the d is computed using the conversion formula reportead at page 238 of Cooper et al. (2009):

\[S^2_d = \left(\frac{n_1 + n_2}{n_1 n_2} + \frac{d^2}{2df} \right) \left(\frac{n_1 + n_2}{n_1 n_2} \right) \]

Value

A list of class effsize containing the following components:

estimate the statistics estimate
conf.int the confidence interval of the statistic
var the estimated variance of the statistic
conf.level the confidence level used to compute the confidence interval
magnitude a qualitative assessment of the magnitude of effect size
method the method used for computing the effect size, either "Cohens d" or "Hedges g"

Author(s)

Marco Torchiano http://softeng.polito.it/torchiano/
References

The Handbook of Research Synthesis and Meta-Analysis (Cooper, Hedges, & Valentine, 2009)

See Also

cliff.delta, VD.A, print.effsize

Examples

treatment = rnorm(100, mean=10)
control = rnorm(100, mean=12)
d = c(treatment, control)
f = rep(c("Treatment", "Control"), each=100)
compute Cohens d
treatment and control
cohen.d(treatment, control)
data and factor
cohen.d(d, f)
formula interface
cohen.d(d ~ f)
compute Hedges g
cohen.d(d, f, hedges.correction=TRUE)

print.effsize

Prints effect size

Description

Prints the results of an effect size computation

Usage

S3 method for class effsize
print(x, ...)

Arguments

x the effect size result
...

... further parameters are currently ignored

Details

Shows the estimate value and, when available, the confidence interval.

Note

This is still work in progress.
VD.A

Author(s)
Marco Torchiano http://softeng.polito.it/torchiano/

References
See the main function `cliff.delta`.

See Also
`cliff.delta` `cohen.d`

Vargha and Delaney A measure

Description

Computes the Vargha and Delaney A effect size measure.

Usage

```r
VD.A(d, ..., )

## S3 method for class formula  
VD.A(formula, data=list(), ...)

## Default S3 method:  
VD.A(d,f, ...)
```

Arguments

- `d`: a numeric vector giving either the data values (if `f` is a factor) or the treatment group values (if `f` is a numeric vector)
- `f`: either a factor with two levels or a numeric vector of values
- `formula`: a formula of the form `y ~ f`, where `y` is a numeric variable giving the data values and `f` a factor with two levels giving the corresponding group
- `data`: an optional matrix or data frame containing the variables in the formula `formula`. By default the variables are taken from `environment(formula)`.
- `...`: further arguments to be passed to or from methods.

Details

The function computes the Vargha and Delaney A effect size measure (Vargha and Delaney, 2000).

Value

A list of class `effsize` containing the following components:

- `estimate`: the A statistics estimate
- `magnitude`: a qualitative assessment of the magnitude of effect size
- `method`: the method used, i.e. "Vargha and Delaney A"
Author(s)

Marco Torchiano [http://softeng.polito.it/torchiano/]

References

See Also

cliff.delta, cohen.d, print.effsize

Examples

treatment = rnorm(100, mean=10)
control = rnorm(100, mean=12)
d = c(treatment,control)
f = rep(c("Treatment","Control"),each=100)
compute Vargha and Delaney A
treatment and control
VD.A(treatment,control)
data and factor
VD.A(d,f)
formula interface
VD.A(d ~ f)
Index

*Topic **Cliff**
 cliff.delta, 2

*Topic **Cohen**
 cohen.d, 4

*Topic **Hedges**
 cohen.d, 4

*Topic **Vargha and Delaney**
 VD.A, 7

*Topic **effect size**
 cliff.delta, 2
 cohen.d, 4
 effsize-package, 1
 VD.A, 7

*Topic **package**
 effsize-package, 1

cliff.delta, 2, 2, 6–8
cohen.d, 2, 4, 4, 7, 8

effsize (effsize-package), 1
effsize-package, 1

print.effsize, 4, 6, 6, 8

VD.A, 2, 6, 7